本文整理匯總了Python中tables.UInt8Atom方法的典型用法代碼示例。如果您正苦於以下問題:Python tables.UInt8Atom方法的具體用法?Python tables.UInt8Atom怎麽用?Python tables.UInt8Atom使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tables
的用法示例。
在下文中一共展示了tables.UInt8Atom方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_carray
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def create_carray(h5f, chrom, data_type):
if data_type == "uint8":
atom = tables.UInt8Atom(dflt=0)
elif data_type == "uint16":
atom = tables.UInt16Atom(dflt=0)
else:
raise NotImplementedError("unsupported datatype %s" % data_type)
zlib_filter = tables.Filters(complevel=1, complib="zlib")
# create CArray for this chromosome
shape = [chrom.length]
carray = h5f.create_carray(h5f.root, chrom.name,
atom, shape, filters=zlib_filter)
return carray
示例2: fetch_svhn_extra
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def fetch_svhn_extra(source_paths, target_path):
extra_path = source_paths[0]
print('Converting {} to HDF5 (compressed)...'.format(extra_path))
f_out = tables.open_file(target_path, mode='w')
g_out = f_out.create_group(f_out.root, 'svhn', 'SVHN data')
filters = tables.Filters(complevel=9, complib='blosc')
X_u8_arr = f_out.create_earray(
g_out, 'extra_X_u8', tables.UInt8Atom(), (0, 3, 32, 32),
filters=filters)
y_arr = f_out.create_earray(
g_out, 'extra_y', tables.Int32Atom(), (0,), filters=filters)
# Load in the extra data Matlab file
_insert_svhn_matlab_to_h5(X_u8_arr, y_arr, extra_path)
f_out.close()
return target_path
示例3: setUp
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def setUp(self):
num_rows = 500
filters = tables.Filters(complib='blosc', complevel=5)
h5file = tables.open_file(
'tmp.h5', mode='w', title='Test', filters=filters)
group = h5file.create_group("/", 'Data')
atom = tables.UInt8Atom()
y = h5file.create_carray(group, 'y', atom=atom, title='Data targets',
shape=(num_rows, 1), filters=filters)
for i in range(num_rows):
y[i] = i
h5file.flush()
h5file.close()
self.dataset = PytablesDataset('tmp.h5', ('y',), 20, 500)
self.dataset_default = PytablesDataset('tmp.h5', ('y',))
示例4: createImgGroup
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def createImgGroup(fid, name, tot_frames, im_height, im_width, is_expandable=True):
parentnode, _, name = name.rpartition('/')
parentnode += '/'
if is_expandable:
img_dataset = fid.create_earray(
parentnode,
name,
atom=tables.UInt8Atom(),
shape =(0,
im_height,
im_width),
chunkshape=(1,
im_height,
im_width),
expectedrows=tot_frames,
filters=TABLE_FILTERS
)
else:
img_dataset = fid.create_carray(
parentnode,
name,
atom=tables.UInt8Atom(),
shape =(tot_frames,
im_height,
im_width),
filters=TABLE_FILTERS
)
img_dataset._v_attrs["CLASS"] = np.string_("IMAGE")
img_dataset._v_attrs["IMAGE_SUBCLASS"] = np.string_("IMAGE_GRAYSCALE")
img_dataset._v_attrs["IMAGE_WHITE_IS_ZERO"] = np.array(0, dtype="uint8")
img_dataset._v_attrs["DISPLAY_ORIGIN"] = np.string_("UL") # not rotated
img_dataset._v_attrs["IMAGE_VERSION"] = np.string_("1.2")
return img_dataset
示例5: create_data_file
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def create_data_file(out_file, n_channels, n_samples, image_shape):
hdf5_file = tables.open_file(out_file, mode='w')
filters = tables.Filters(complevel=5, complib='blosc')
data_shape = tuple([0, n_channels] + list(image_shape))
truth_shape = tuple([0, 1] + list(image_shape))
data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape,
filters=filters, expectedrows=n_samples)
truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape,
filters=filters, expectedrows=n_samples)
affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=(0, 4, 4),
filters=filters, expectedrows=n_samples)
return hdf5_file, data_storage, truth_storage, affine_storage
示例6: create_data_file
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def create_data_file(out_file, n_channels, n_samples, image_shape):
hdf5_file = tables.open_file(out_file, mode='w')
filters = tables.Filters(complevel=5, complib='blosc')
data_shape = tuple([0, n_channels] + list(image_shape))
truth_shape = tuple([0, 1])
data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.Float32Atom(), shape=data_shape,
filters=filters, expectedrows=n_samples)
truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape,
filters=filters, expectedrows=n_samples)
return hdf5_file, data_storage, truth_storage
示例7: _save_ndarray
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def _save_ndarray(handler, group, name, x, filters=None):
if np.issubdtype(x.dtype, np.unicode_):
# Convert unicode strings to pure byte arrays
strtype = b'unicode'
itemsize = x.itemsize // 4
atom = tables.UInt8Atom()
x = x.view(dtype=np.uint8)
elif np.issubdtype(x.dtype, np.string_):
strtype = b'ascii'
itemsize = x.itemsize
atom = tables.StringAtom(itemsize)
elif x.dtype == np.object:
# Not supported by HDF5, force pickling
_save_pickled(handler, group, x, name=name)
return
else:
atom = tables.Atom.from_dtype(x.dtype)
strtype = None
itemsize = None
if x.ndim > 0 and np.min(x.shape) == 0:
sh = np.array(x.shape)
atom0 = tables.Atom.from_dtype(np.dtype(np.int64))
node = handler.create_array(group, name, atom=atom0,
shape=(sh.size,))
node._v_attrs.zeroarray_dtype = np.dtype(x.dtype).str.encode('ascii')
node[:] = sh
return
if x.ndim == 0 and len(x.shape) == 0:
# This is a numpy array scalar. We will store it as a regular scalar
# instead, which means it will be unpacked as a numpy scalar (not numpy
# array scalar)
setattr(group._v_attrs, name, x[()])
return
# For small arrays, compression actually leads to larger files, so we are
# settings a threshold here. The threshold has been set through
# experimentation.
if filters is not None and x.size > 300:
node = handler.create_carray(group, name, atom=atom,
shape=x.shape,
chunkshape=None,
filters=filters)
else:
node = handler.create_array(group, name, atom=atom,
shape=x.shape)
if strtype is not None:
node._v_attrs.strtype = strtype
node._v_attrs.itemsize = itemsize
node[:] = x
示例8: prepare
# 需要導入模塊: import tables [as 別名]
# 或者: from tables import UInt8Atom [as 別名]
def prepare():
import os
import sys
import numpy as np
import tables
import tqdm
import domain_datasets
import cv2
synsigns_path = domain_datasets.get_data_dir('syn_signs')
data_path = os.path.join(synsigns_path, 'synthetic_data')
labels_path = os.path.join(data_path, 'train_labelling.txt')
if not os.path.exists(labels_path):
print('Labels path {} does not exist'.format(labels_path))
sys.exit(0)
# Open the file that lists the image files along with their ground truth class
lines = [line.strip() for line in open(labels_path, 'r').readlines()]
lines = [line for line in lines if line != '']
output_path = os.path.join(synsigns_path, 'syn_signs.h5')
print('Creating {}...'.format(output_path))
f_out = tables.open_file(output_path, mode='w')
g_out = f_out.create_group(f_out.root, 'syn_signs', 'Syn-Signs data')
filters = tables.Filters(complevel=9, complib='blosc')
X_u8_arr = f_out.create_earray(
g_out, 'X_u8', tables.UInt8Atom(), (0, 3, 40, 40), expectedrows=len(lines),
filters=filters)
y = []
for line in tqdm.tqdm(lines):
image_filename, gt, _ = line.split()
image_path = os.path.join(data_path, image_filename)
if not os.path.exists(image_path):
print('Could not find image file {} mentioned in annotations'.format(image_path))
return
image_data = cv2.imread(image_path)[:, :, ::-1]
X_u8_arr.append(image_data.transpose(2, 0, 1)[None, ...])
y.append(int(gt))
y = np.array(y, dtype=np.int32)
f_out.create_array(g_out, 'y', y)
print('X.shape={}'.format(X_u8_arr.shape))
print('y.shape={}'.format(y.shape))
f_out.close()