本文整理匯總了Python中sys.float_info.max方法的典型用法代碼示例。如果您正苦於以下問題:Python float_info.max方法的具體用法?Python float_info.max怎麽用?Python float_info.max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sys.float_info
的用法示例。
在下文中一共展示了float_info.max方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_view_data
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def get_view_data():
waypoint_ids = app.waypoint.get_waypoint_ids()
waypoints = {}
arrows = app.arrow.get_arrows()
lat_min, lng_min = float_info.max, float_info.max
lat_max, lng_max = 0.0, 0.0
for waypoint_id in waypoint_ids:
lat, lng = app.waypoint.get_latlng(waypoint_id)
lat_min = min(lat_min, lat)
lat_max = max(lat_max, lat)
lng_min = min(lng_min, lng)
lng_max = max(lng_max, lng)
waypoints[waypoint_id] = {
"geohash": app.waypoint.get_geohash(waypoint_id),
"position": dict(zip(["x", "y", "z"], app.waypoint.get_xyz(waypoint_id)))
}
return api_response(code=200, message={
"viewPoint": {
"lat": 0.5*(lat_max + lat_min),
"lng": 0.5*(lng_max + lng_min)},
"waypoints": waypoints,
"arrows": arrows,
"topics": app.topics
})
示例2: as_frame_time
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def as_frame_time(self, _in_time_seconds: float):
"""
Convert the specified time in seconds to a frame number by rounding
down to the nearest integer
Param: _in_time_seconds The time to convert in seconds
Returns a frame number that represents the supplied time. Rounded
down to the nearest integer
"""
time_as_frame = ((_in_time_seconds * self.numerator)
/ self.denominator)
frame_number = math.floor(time_as_frame)
sub_frame = time_as_frame - math.floor(time_as_frame)
if sub_frame > 0:
sub_frame = min(sub_frame, float_info.max)
return FrameTime(frame_number, sub_frame)
示例3: from_decimal
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def from_decimal(self, _in_decimal_frame):
"""
Convert a decimal representation to a frame time
Note that subframes are always positive, so negative
decimal representations result in an inverted sub frame
and floored frame number
"""
new_frame = math.floor(_in_decimal_frame)
# Ensure fractional parts above the highest sub frame
# float precision do not round to 0.0
fraction = _in_decimal_frame - math.floor(_in_decimal_frame)
# clamp = max(min(value, max_value), min_value)
return FrameTime(new_frame,
max(min(fraction, float_info.max), float_info.min))
示例4: number_of_coins
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def number_of_coins(money,coins):
number = [0] # We will use Dynamic Programming, and solve
# the problem for each amount up to and including money
for m in range(1,money+1): # solve for m
nn = float_info.max # Number of coins: assume that we haven't solved
for coin in coins: # Find a coin such that we can make change using it
# plus a previoudly comuted value
if m>=coin:
if number[m-coin]+1<nn:
nn = number[m-coin]+1
number.append(nn)
return number[money]
# BA5B Find the Length of a Longest Path in a Manhattan-like Grid
#
# Input: Integers n and m, followed by an n*(m+1) matrix Down and an
# (n+1)*m matrix Right. The two matrices are separated by the "-" symbol.
#
# Return: The length of a longest path from source (0, 0) to sink (n, m)
# in the n*m rectangular grid whose edges are defined by the matrices
# Down and Right.
#
# http://rosalind.info/problems/ba5a/
示例5: longest_manhattan_path
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def longest_manhattan_path(n,m,down,right):
s=[]
for i in range(n+1):
s.append(zeroes(m+1))
for i in range(1,n+1):
s[i][0]=s[i-1][0]+down[i-1][0]
for j in range(1,m+1):
s[0][j]=s[0][j-1]+right[0][j-1]
for i in range(1,n+1):
for j in range(1,m+1):
s[i][j]=max(s[i-1][j]+down[i-1][j],s[i][j-1]+right[i][j-1])
return s[n][m]
# BA5C Find a Longest Common Subsequence of Two Strings
#
# Input: Two strings.
#
# Return: A longest common subsequence of these strings.
#
# http://rosalind.info/problems/ba5a/
示例6: test_large_number
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def test_large_number(self):
most_max = (
'{}179769313486231570814527423731704356798070567525844996'
'598917476803157260780028538760589558632766878171540458953'
'514382464234321326889464182768467546703537516986049910576'
'551282076245490090389328944075868508455133942304583236903'
'222948165808559332123348274797826204144723168738177180919'
'29988125040402618412485836{}'
)
most_max2 = (
'{}35953862697246314162905484746340871359614113505168999'
'31978349536063145215600570775211791172655337563430809179'
'07028764928468642653778928365536935093407075033972099821'
'15310256415249098018077865788815173701691026788460916647'
'38064458963316171186642466965495956524082894463374763543'
'61838599762500808052368249716736'
)
int_max = int(float_info.max)
self.assertEqual(nformat(int_max, '.'), most_max.format('', '8'))
self.assertEqual(nformat(int_max + 1, '.'), most_max.format('', '9'))
self.assertEqual(nformat(int_max * 2, '.'), most_max2.format(''))
self.assertEqual(nformat(0 - int_max, '.'), most_max.format('-', '8'))
self.assertEqual(nformat(-1 - int_max, '.'), most_max.format('-', '9'))
self.assertEqual(nformat(-2 * int_max, '.'), most_max2.format('-'))
示例7: __init__
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def __init__(self, bottom=float_info.min,
top=float_info.max,
decimals=float_info.dig, parent=None):
super(MyDoubleValidator, self).__init__(bottom, top, decimals, parent)
示例8: create_distance_matrix
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def create_distance_matrix(nrows,ncolumns,initial_value=-float_info.max):
s=[]
for i in range(nrows):
row=[]
for j in range(ncolumns):
row.append(initial_value)
s.append(row)
s[0][0]=0
return s
示例9: test_split
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def test_split(sample, y_s, feature, n_classes):
size = y_s.shape[0]
if size == 0:
return float_info.max, np.float64(np.inf)
f = feature[sample]
sort_indices = np.argsort(f)
y_sorted = y_s[sort_indices]
f_sorted = f[sort_indices]
not_repeated = np.empty(size, dtype=np.bool_)
not_repeated[0: size - 1] = (f_sorted[1:] != f_sorted[:-1])
not_repeated[size - 1] = True
l_freq = np.zeros((n_classes, size), dtype=np.int64)
l_freq[y_sorted, np.arange(size)] = 1
r_freq = np.zeros((n_classes, size), dtype=np.int64)
r_freq[:, 1:] = l_freq[:, :0:-1]
l_weight = np.sum(np.square(np.cumsum(l_freq, axis=-1)), axis=0)
r_weight = np.sum(np.square(np.cumsum(r_freq, axis=-1)), axis=0)[::-1]
l_length = np.arange(1, size + 1, dtype=np.int32)
r_length = np.arange(size - 1, -1, -1, dtype=np.int32)
r_length[size - 1] = 1 # Avoid div by zero, the right score is 0 anyways
scores = gini_criteria_proxy(l_weight, l_length, r_weight, r_length,
not_repeated)
min_index = size - np.argmin(scores[::-1]) - 1
if min_index + 1 == size:
b_value = np.float64(np.inf)
else:
b_value = (f_sorted[min_index] + f_sorted[min_index + 1]) / 2
return scores[min_index], b_value
示例10: _split_node_wrapper
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def _split_node_wrapper(sample, n_features, y_s, n_classes, m_try,
random_state, samples_file=None, features_file=None):
seed = random_state.randint(np.iinfo(np.int32).max)
if features_file is not None:
return _split_node_using_features(sample, n_features, y_s, n_classes,
m_try, features_file, seed)
elif samples_file is not None:
return _split_node(sample, n_features, y_s, n_classes, m_try,
samples_file, seed)
else:
raise ValueError('Invalid combination of arguments. samples_file is '
'None and features_file is None.')
示例11: _compute_split
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def _compute_split(sample, n_features, y_s, n_classes, m_try, features_mmap,
random_state):
node_info = left_group = y_l = right_group = y_r = None
split_ended = False
tried_indices = []
while not split_ended:
untried_indices = np.setdiff1d(np.arange(n_features), tried_indices)
index_selection = _feature_selection(untried_indices, m_try,
random_state)
b_score = float_info.max
b_index = None
b_value = None
for index in index_selection:
feature = features_mmap[index]
score, value = test_split(sample, y_s, feature, n_classes)
if score < b_score:
b_score, b_value, b_index = score, value, index
groups = _get_groups(sample, y_s, features_mmap, b_index, b_value)
left_group, y_l, right_group, y_r = groups
if left_group.size and right_group.size:
split_ended = True
node_info = _InnerNodeInfo(b_index, b_value)
else:
tried_indices.extend(list(index_selection))
if len(tried_indices) == n_features:
split_ended = True
node_info = _compute_leaf_info(y_s, n_classes)
left_group = sample
y_l = y_s
right_group = np.array([], dtype=np.int64)
y_r = np.array([], dtype=np.int8)
return node_info, left_group, y_l, right_group, y_r
示例12: _build_subtree_wrapper
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def _build_subtree_wrapper(sample, y_s, n_features, max_depth, n_classes,
m_try, sklearn_max, random_state, samples_file,
features_file):
seed = random_state.randint(np.iinfo(np.int32).max)
if features_file is not None:
return _build_subtree_using_features(sample, y_s, n_features,
max_depth, n_classes, m_try,
sklearn_max, seed, samples_file,
features_file)
else:
return _build_subtree(sample, y_s, n_features, max_depth, n_classes,
m_try, sklearn_max, seed, samples_file)
示例13: __init__
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def __init__(self):
self._weighted_sum = 0
self._weighted_sum_squared = 0
self._sum_of_weights = 0
self._mean = 0
self._variance = float_info.max
self._min_var = 1e-12
self.CONST = math.log(2 * math.pi)
示例14: update_mean_and_variance
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def update_mean_and_variance(self):
self._mean = 0
if self._sum_of_weights > 0:
self._mean = self._weighted_sum / self._sum_of_weights
self._variance = float_info.max
if self._sum_of_weights > 0:
self._variance = self._weighted_sum_squared / self._sum_of_weights - self._mean * self._mean
if self._variance <= self._min_var:
self._variance = self._min_var
示例15: gpd_loglikelihood_scale_and_shape
# 需要導入模塊: from sys import float_info [as 別名]
# 或者: from sys.float_info import max [as 別名]
def gpd_loglikelihood_scale_and_shape(scale, shape, price_data):
n = len(price_data)
result = -1 * float_info.max
if (scale != 0):
param_factor = shape / scale
if (shape != 0 and param_factor >= 0 and scale >= 0):
result = ((-n * np.log(scale)) -
(((1 / shape) + 1) *
(np.log((shape / scale * price_data) + 1)).sum()))
return result