本文整理匯總了Python中syntaxnet.util.check.IsTrue方法的典型用法代碼示例。如果您正苦於以下問題:Python check.IsTrue方法的具體用法?Python check.IsTrue怎麽用?Python check.IsTrue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類syntaxnet.util.check
的用法示例。
在下文中一共展示了check.IsTrue方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testCheckIsTrue
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import IsTrue [as 別名]
def testCheckIsTrue(self):
check.IsTrue(1 == 1.0, 'foo')
check.IsTrue(True, 'foo')
check.IsTrue([0], 'foo')
check.IsTrue({'x': 1}, 'foo')
check.IsTrue(not 0, 'foo')
check.IsTrue(not None, 'foo')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.IsTrue(False, 'bar')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.IsTrue(None, 'bar')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.IsTrue(0, 'bar')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.IsTrue([], 'bar')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.IsTrue({}, 'bar')
with self.assertRaisesRegexp(RuntimeError, 'baz'):
check.IsTrue('', 'baz', RuntimeError)
示例2: _validate_embedded_fixed_features
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import IsTrue [as 別名]
def _validate_embedded_fixed_features(comp):
"""Checks that the embedded fixed features of |comp| are set up properly."""
for feature in comp.spec.fixed_feature:
check.Gt(feature.embedding_dim, 0,
'Embeddings requested for non-embedded feature: %s' % feature)
if feature.is_constant:
check.IsTrue(feature.HasField('pretrained_embedding_matrix'),
'Constant embeddings must be pretrained: %s' % feature)
示例3: _validate_embedded_fixed_features
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import IsTrue [as 別名]
def _validate_embedded_fixed_features(comp):
"""Checks that the embedded fixed features of |comp| are set up properly."""
for feature in comp.spec.fixed_feature:
check.Gt(feature.embedding_dim, 0,
'Embeddings requested for non-embedded feature: %s' % feature)
if feature.is_constant:
check.IsTrue(
feature.HasField('pretrained_embedding_matrix'),
'Constant embeddings must be pretrained: %s' % feature)
示例4: fill_from_resources
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import IsTrue [as 別名]
def fill_from_resources(self, resource_path, tf_master=''):
"""Fills in feature sizes and vocabularies using SyntaxNet lexicon.
Must be called before the spec is ready to be used to build TensorFlow
graphs. Requires a SyntaxNet lexicon built at the resource_path. Using the
lexicon, this will call the SyntaxNet custom ops to return the number of
features and vocabulary sizes based on the FML specifications and the
lexicons. It will also compute the number of actions of the transition
system.
This will often CHECK-fail if the spec doesn't correspond to a valid
transition system or feature setup.
Args:
resource_path: Path to the lexicon.
tf_master: TensorFlow master executor (string, defaults to '' to use the
local instance).
"""
check.IsTrue(
self.spec.transition_system.registered_name,
'Set a transition system before calling fill_from_resources().')
context = lexicon.create_lexicon_context(resource_path)
for key, value in self.spec.transition_system.parameters.iteritems():
context.parameter.add(name=key, value=value)
context.parameter.add(
name='brain_parser_embedding_dims',
value=';'.join(
[str(x.embedding_dim) for x in self.spec.fixed_feature]))
context.parameter.add(
name='brain_parser_features',
value=';'.join([x.fml for x in self.spec.fixed_feature]))
context.parameter.add(
name='brain_parser_predicate_maps',
value=';'.join(['' for x in self.spec.fixed_feature]))
context.parameter.add(
name='brain_parser_embedding_names',
value=';'.join([x.name for x in self.spec.fixed_feature]))
context.parameter.add(
name='brain_parser_transition_system',
value=self.spec.transition_system.registered_name)
# Propagate information from SyntaxNet C++ backends into the DRAGNN
# self.spec.
with tf.Session(tf_master) as sess:
feature_sizes, domain_sizes, _, num_actions = sess.run(
gen_parser_ops.feature_size(task_context_str=str(context)))
self.spec.num_actions = int(num_actions)
for i in xrange(len(feature_sizes)):
self.spec.fixed_feature[i].size = int(feature_sizes[i])
self.spec.fixed_feature[i].vocabulary_size = int(domain_sizes[i])
for i in xrange(len(self.spec.linked_feature)):
self.spec.linked_feature[i].size = len(
self.spec.linked_feature[i].fml.split(' '))
for resource in context.input:
self.spec.resource.add(name=resource.name).part.add(
file_pattern=resource.part[0].file_pattern)