本文整理匯總了Python中syntaxnet.util.check.Ge方法的典型用法代碼示例。如果您正苦於以下問題:Python check.Ge方法的具體用法?Python check.Ge怎麽用?Python check.Ge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類syntaxnet.util.check
的用法示例。
在下文中一共展示了check.Ge方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_array
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Ge [as 別名]
def create_array(self, stride):
"""Creates a new tensor array to store this layer's activations.
Arguments:
stride: Possibly dynamic batch * beam size with which to initialize the
tensor array
Returns:
TensorArray object
"""
check.Ge(self.dim, 0, 'Cannot create array when dimension is dynamic')
tensor_array = ta.TensorArray(
dtype=tf.float32,
size=0,
dynamic_size=True,
clear_after_read=False,
infer_shape=False,
name='%s_array' % self.name)
# Start each array with all zeros. Special values will still be learned via
# the extra embedding dimension stored for each linked feature channel.
initial_value = tf.zeros([stride, self.dim])
return tensor_array.write(0, initial_value)
示例2: testCheckGe
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Ge [as 別名]
def testCheckGe(self):
check.Ge(2, 1, 'foo')
check.Ge(1, 1, 'foo')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.Ge(0, 1, 'bar')
with self.assertRaisesRegexp(RuntimeError, 'baz'):
check.Ge(-1, 1, 'baz', RuntimeError)
示例3: calculate_segmentation_metrics
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Ge [as 別名]
def calculate_segmentation_metrics(gold_corpus, annotated_corpus):
"""Calculate precision/recall/f1 based on gold and annotated sentences."""
check.Eq(len(gold_corpus), len(annotated_corpus), 'Corpora are not aligned')
num_gold_tokens = 0
num_test_tokens = 0
num_correct_tokens = 0
def token_span(token):
check.Ge(token.end, token.start)
return (token.start, token.end)
def ratio(numerator, denominator):
check.Ge(numerator, 0)
check.Ge(denominator, 0)
if denominator > 0:
return numerator / denominator
elif numerator == 0:
return 0.0 # map 0/0 to 0
else:
return float('inf') # map x/0 to inf
for gold_str, annotated_str in zip(gold_corpus, annotated_corpus):
gold = sentence_pb2.Sentence()
annotated = sentence_pb2.Sentence()
gold.ParseFromString(gold_str)
annotated.ParseFromString(annotated_str)
check.Eq(gold.text, annotated.text, 'Text is not aligned')
gold_spans = set()
test_spans = set()
for token in gold.token:
check.NotIn(token_span(token), gold_spans, 'Duplicate token')
gold_spans.add(token_span(token))
for token in annotated.token:
check.NotIn(token_span(token), test_spans, 'Duplicate token')
test_spans.add(token_span(token))
num_gold_tokens += len(gold_spans)
num_test_tokens += len(test_spans)
num_correct_tokens += len(gold_spans.intersection(test_spans))
tf.logging.info('Total num documents: %d', len(annotated_corpus))
tf.logging.info('Total gold tokens: %d', num_gold_tokens)
tf.logging.info('Total test tokens: %d', num_test_tokens)
precision = 100 * ratio(num_correct_tokens, num_test_tokens)
recall = 100 * ratio(num_correct_tokens, num_gold_tokens)
f1 = ratio(2 * precision * recall, precision + recall)
tf.logging.info('Precision: %.2f%%', precision)
tf.logging.info('Recall: %.2f%%', recall)
tf.logging.info('F1: %.2f%%', f1)
return round(precision, 2), round(recall, 2), round(f1, 2)
示例4: maybe_apply_dropout
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Ge [as 別名]
def maybe_apply_dropout(inputs, keep_prob, per_sequence, stride=None):
"""Applies dropout, if so configured, to an input tensor.
The input may be rank 2 or 3 depending on whether the stride (i.e., batch
size) has been incorporated into the shape.
Args:
inputs: [stride * num_steps, dim] or [stride, num_steps, dim] input tensor.
keep_prob: Scalar probability of keeping each input element. If >= 1.0, no
dropout is performed.
per_sequence: If true, sample the dropout mask once per sequence, instead of
once per step. Requires |stride| when true.
stride: Scalar batch size. Optional if |per_sequence| is false.
Returns:
[stride * num_steps, dim] or [stride, num_steps, dim] tensor, matching the
shape of |inputs|, containing the masked or original inputs, depending on
whether dropout was actually performed.
"""
check.Ge(inputs.get_shape().ndims, 2, 'inputs must be rank 2 or 3')
check.Le(inputs.get_shape().ndims, 3, 'inputs must be rank 2 or 3')
flat = (inputs.get_shape().ndims == 2)
if keep_prob >= 1.0:
return inputs
if not per_sequence:
return tf.nn.dropout(inputs, keep_prob)
check.NotNone(stride, 'per-sequence dropout requires stride')
dim = inputs.get_shape().as_list()[-1]
check.NotNone(dim, 'inputs must have static activation dimension, but have '
'static shape %s' % inputs.get_shape().as_list())
# If needed, restore the batch dimension to separate the sequences.
inputs_sxnxd = tf.reshape(inputs, [stride, -1, dim]) if flat else inputs
# Replace |num_steps| with 1 in |noise_shape|, so the dropout mask broadcasts
# to all steps for a particular sequence.
noise_shape = [stride, 1, dim]
masked_sxnxd = tf.nn.dropout(inputs_sxnxd, keep_prob, noise_shape)
# If needed, flatten out the batch dimension in the return value.
return tf.reshape(masked_sxnxd, [-1, dim]) if flat else masked_sxnxd
示例5: maybe_apply_dropout
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Ge [as 別名]
def maybe_apply_dropout(inputs, keep_prob, per_sequence, stride=None):
"""Applies dropout, if so configured, to an input tensor.
The input may be rank 2 or 3 depending on whether the stride (i.e., batch
size) has been incorporated into the shape.
Args:
inputs: [stride * num_steps, dim] or [stride, num_steps, dim] input tensor.
keep_prob: Scalar probability of keeping each input element. If >= 1.0, no
dropout is performed.
per_sequence: If true, sample the dropout mask once per sequence, instead of
once per step. Requires |stride| when true.
stride: Scalar batch size. Optional if |per_sequence| is false.
Returns:
[stride * num_steps, dim] or [stride, num_steps, dim] tensor, matching the
shape of |inputs|, containing the masked or original inputs, depending on
whether dropout was actually performed.
"""
if keep_prob >= 1.0:
return inputs
if not per_sequence:
return tf.nn.dropout(inputs, keep_prob)
# We only check the dims if we are applying per-sequence dropout
check.Ge(inputs.get_shape().ndims, 2, 'inputs must be rank 2 or 3')
check.Le(inputs.get_shape().ndims, 3, 'inputs must be rank 2 or 3')
flat = (inputs.get_shape().ndims == 2)
check.NotNone(stride, 'per-sequence dropout requires stride')
dim = inputs.get_shape().as_list()[-1]
check.NotNone(dim, 'inputs must have static activation dimension, but have '
'static shape %s' % inputs.get_shape().as_list())
# If needed, restore the batch dimension to separate the sequences.
inputs_sxnxd = tf.reshape(inputs, [stride, -1, dim]) if flat else inputs
# Replace |num_steps| with 1 in |noise_shape|, so the dropout mask broadcasts
# to all steps for a particular sequence.
noise_shape = [stride, 1, dim]
masked_sxnxd = tf.nn.dropout(inputs_sxnxd, keep_prob, noise_shape)
# If needed, flatten out the batch dimension in the return value.
return tf.reshape(masked_sxnxd, [-1, dim]) if flat else masked_sxnxd
示例6: maybe_apply_dropout
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Ge [as 別名]
def maybe_apply_dropout(inputs,
keep_prob,
per_sequence,
stride=None,
dropout_mask=None,
name=None):
"""Applies dropout, if so configured, to an input tensor.
The input may be rank 2 or 3 depending on whether the stride (i.e., batch
size) has been incorporated into the shape.
Args:
inputs: [stride * num_steps, dim] or [stride, num_steps, dim] input tensor.
keep_prob: Scalar probability of keeping each input element. If >= 1.0, no
dropout is performed.
per_sequence: If true, sample the dropout mask once per sequence, instead of
once per step. Either |stride| or |dropout_mask| must be set when true.
stride: Scalar batch size. Optional if |per_sequence| is false, or if
|dropout_mask| is provided.
dropout_mask: Precomputed dropout mask to apply to the |inputs|; must be
broadcastable to |inputs|. Optional if |per_sequence| is false, or if
|stride| is provided.
name: Optional name for the dropout operation, if dropout is applied.
Returns:
[stride * num_steps, dim] or [stride, num_steps, dim] tensor, matching the
shape of |inputs|, containing the masked or original inputs, depending on
whether dropout was actually performed.
"""
if keep_prob >= 1.0:
return inputs
if not per_sequence:
return tf.nn.dropout(inputs, keep_prob, name=name)
if dropout_mask is not None:
return tf.multiply(inputs, dropout_mask, name=name)
# We only check the dims if we are applying per-sequence dropout
check.Ge(inputs.get_shape().ndims, 2, 'inputs must be rank 2 or 3')
check.Le(inputs.get_shape().ndims, 3, 'inputs must be rank 2 or 3')
flat = (inputs.get_shape().ndims == 2)
check.NotNone(stride, 'per-sequence dropout requires stride')
dim = inputs.get_shape().as_list()[-1]
check.NotNone(dim, 'inputs must have static activation dimension, but have '
'static shape %s' % inputs.get_shape().as_list())
# If needed, restore the batch dimension to separate the sequences.
inputs_sxnxd = tf.reshape(inputs, [stride, -1, dim]) if flat else inputs
# Replace |num_steps| with 1 in |noise_shape|, so the dropout mask broadcasts
# to all steps for a particular sequence.
noise_shape = [stride, 1, dim]
masked_sxnxd = tf.nn.dropout(inputs_sxnxd, keep_prob, noise_shape, name=name)
# If needed, flatten out the batch dimension in the return value.
return tf.reshape(masked_sxnxd, [-1, dim]) if flat else masked_sxnxd