本文整理匯總了Python中syntaxnet.util.check.Eq方法的典型用法代碼示例。如果您正苦於以下問題:Python check.Eq方法的具體用法?Python check.Eq怎麽用?Python check.Eq使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類syntaxnet.util.check
的用法示例。
在下文中一共展示了check.Eq方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def __init__(self, component):
"""Initializes weights and layers.
Args:
component: Parent ComponentBuilderBase object.
"""
super(GatherNetwork, self).__init__(component)
self._attrs = get_attrs_with_defaults(
component.spec.network_unit.parameters, {'trainable_padding': False})
check.In('indices', self._linked_feature_dims,
'Missing required linked feature')
check.Eq(self._linked_feature_dims['indices'], 1,
'Wrong dimension for "indices" feature')
self._dim = self._concatenated_input_dim - 1 # exclude 'indices'
self._layers.append(Layer(component, 'outputs', self._dim))
if self._attrs['trainable_padding']:
self._params.append(
tf.get_variable(
'pre_padding', [1, 1, self._dim],
initializer=tf.random_normal_initializer(stddev=1e-4),
dtype=tf.float32))
示例2: calculate_parse_metrics
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def calculate_parse_metrics(gold_corpus, annotated_corpus):
"""Calculate POS/UAS/LAS accuracy based on gold and annotated sentences."""
check.Eq(len(gold_corpus), len(annotated_corpus), 'Corpora are not aligned')
num_tokens = 0
num_correct_pos = 0
num_correct_uas = 0
num_correct_las = 0
for gold_str, annotated_str in zip(gold_corpus, annotated_corpus):
gold = sentence_pb2.Sentence()
annotated = sentence_pb2.Sentence()
gold.ParseFromString(gold_str)
annotated.ParseFromString(annotated_str)
check.Eq(gold.text, annotated.text, 'Text is not aligned')
check.Eq(len(gold.token), len(annotated.token), 'Tokens are not aligned')
tokens = zip(gold.token, annotated.token)
num_tokens += len(tokens)
num_correct_pos += sum(1 for x, y in tokens if x.tag == y.tag)
num_correct_uas += sum(1 for x, y in tokens if x.head == y.head)
num_correct_las += sum(1 for x, y in tokens
if x.head == y.head and x.label == y.label)
tf.logging.info('Total num documents: %d', len(annotated_corpus))
tf.logging.info('Total num tokens: %d', num_tokens)
pos = num_correct_pos * 100.0 / num_tokens
uas = num_correct_uas * 100.0 / num_tokens
las = num_correct_las * 100.0 / num_tokens
tf.logging.info('POS: %.2f%%', pos)
tf.logging.info('UAS: %.2f%%', uas)
tf.logging.info('LAS: %.2f%%', las)
return pos, uas, las
示例3: create
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def create(self,
fixed_embeddings,
linked_embeddings,
context_tensor_arrays,
attention_tensor,
during_training,
stride=None):
"""See base class."""
check.Eq(len(self.layers), len(fixed_embeddings))
for index in range(len(fixed_embeddings)):
check.Eq(self.layers[index].name, fixed_embeddings[index].name)
return [fixed_embedding.tensor for fixed_embedding in fixed_embeddings]
示例4: extract_fixed_feature_ids
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def extract_fixed_feature_ids(comp, state, stride):
"""Extracts fixed feature IDs.
Args:
comp: Component whose fixed feature IDs we wish to extract.
state: Live MasterState object for the component.
stride: Tensor containing current batch * beam size.
Returns:
state handle: Updated state handle to be used after this call.
ids: List of [stride * num_steps, 1] feature IDs per channel. Missing IDs
(e.g., due to batch padding) are set to -1.
"""
num_channels = len(comp.spec.fixed_feature)
if not num_channels:
return state.handle, []
for feature_spec in comp.spec.fixed_feature:
check.Eq(feature_spec.size, 1, 'All features must have size=1')
check.Lt(feature_spec.embedding_dim, 0, 'All features must be non-embedded')
state.handle, indices, ids, _, num_steps = dragnn_ops.bulk_fixed_features(
state.handle, component=comp.name, num_channels=num_channels)
size = stride * num_steps
fixed_ids = []
for channel, feature_spec in enumerate(comp.spec.fixed_feature):
tf.logging.info('[%s] Adding fixed feature IDs "%s"', comp.name,
feature_spec.name)
# The +1 and -1 increments ensure that missing IDs default to -1.
#
# TODO(googleuser): This formula breaks if multiple IDs are extracted at some
# step. Try using tf.unique() to enforce the unique-IDS precondition.
sums = tf.unsorted_segment_sum(ids[channel] + 1, indices[channel], size) - 1
sums = tf.expand_dims(sums, axis=1)
fixed_ids.append(network_units.NamedTensor(sums, feature_spec.name, dim=1))
return state.handle, fixed_ids
示例5: __init__
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def __init__(self, master, component_spec):
"""Initializes the feature ID extractor component.
Args:
master: dragnn.MasterBuilder object.
component_spec: dragnn.ComponentSpec proto to be built.
"""
super(BulkFeatureIdExtractorComponentBuilder, self).__init__(
master, component_spec)
check.Eq(len(self.spec.linked_feature), 0, 'Linked features are forbidden')
for feature_spec in self.spec.fixed_feature:
check.Lt(feature_spec.embedding_dim, 0,
'Features must be non-embedded: %s' % feature_spec)
示例6: __init__
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def __init__(self, component):
"""Initializes weights and layers.
Args:
component: Parent ComponentBuilderBase object.
"""
super(BiaffineDigraphNetwork, self).__init__(component)
check.Eq(len(self._fixed_feature_dims.items()), 0,
'Expected no fixed features')
check.Eq(len(self._linked_feature_dims.items()), 2,
'Expected two linked features')
check.In('sources', self._linked_feature_dims,
'Missing required linked feature')
check.In('targets', self._linked_feature_dims,
'Missing required linked feature')
self._source_dim = self._linked_feature_dims['sources']
self._target_dim = self._linked_feature_dims['targets']
# TODO(googleuser): Make parameter initialization configurable.
self._weights = []
self._weights.append(tf.get_variable(
'weights_arc', [self._source_dim, self._target_dim], tf.float32,
tf.random_normal_initializer(stddev=1e-4)))
self._weights.append(tf.get_variable(
'weights_source', [self._source_dim], tf.float32,
tf.random_normal_initializer(stddev=1e-4)))
self._weights.append(tf.get_variable(
'root', [self._source_dim], tf.float32,
tf.random_normal_initializer(stddev=1e-4)))
self._params.extend(self._weights)
self._regularized_weights.extend(self._weights)
# Negative Layer.dim indicates that the dimension is dynamic.
self._layers.append(network_units.Layer(self, 'adjacency', -1))
示例7: CombineArcAndRootPotentials
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def CombineArcAndRootPotentials(arcs, roots):
"""Combines arc and root potentials into a single set of potentials.
Args:
arcs: [B,N,N] tensor of batched arc potentials.
roots: [B,N] matrix of batched root potentials.
Returns:
[B,N,N] tensor P of combined potentials where
P_{b,s,t} = s == t ? roots[b,t] : arcs[b,s,t]
"""
# All arguments must have statically-known rank.
check.Eq(arcs.get_shape().ndims, 3, 'arcs must be rank 3')
check.Eq(roots.get_shape().ndims, 2, 'roots must be a matrix')
# All arguments must share the same type.
dtype = arcs.dtype.base_dtype
check.Same([dtype, roots.dtype.base_dtype], 'dtype mismatch')
roots_shape = tf.shape(roots)
arcs_shape = tf.shape(arcs)
batch_size = roots_shape[0]
num_tokens = roots_shape[1]
with tf.control_dependencies([
tf.assert_equal(batch_size, arcs_shape[0]),
tf.assert_equal(num_tokens, arcs_shape[1]),
tf.assert_equal(num_tokens, arcs_shape[2])]):
return tf.matrix_set_diag(arcs, roots)
示例8: Eq
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def Eq(lhs, rhs, message='', error=ValueError):
"""Raises an error if |lhs| does not equal |rhs|."""
if lhs != rhs:
raise error('Expected (%s) == (%s): %s' % (lhs, rhs, message))
示例9: testCheckEq
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def testCheckEq(self):
check.Eq(1, 1, 'foo')
with self.assertRaisesRegexp(ValueError, 'bar'):
check.Eq(1, 2, 'bar')
with self.assertRaisesRegexp(RuntimeError, 'baz'):
check.Eq(1, 2, 'baz', RuntimeError)
示例10: __init__
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def __init__(self, component):
"""Initializes weights and layers.
Args:
component: Parent ComponentBuilderBase object.
"""
super(BiaffineDigraphNetwork, self).__init__(component)
check.Eq(len(self._fixed_feature_dims.items()), 0,
'Expected no fixed features')
check.Eq(len(self._linked_feature_dims.items()), 2,
'Expected two linked features')
check.In('sources', self._linked_feature_dims,
'Missing required linked feature')
check.In('targets', self._linked_feature_dims,
'Missing required linked feature')
self._source_dim = self._linked_feature_dims['sources']
self._target_dim = self._linked_feature_dims['targets']
# TODO(googleuser): Make parameter initialization configurable.
self._weights = []
self._weights.append(tf.get_variable(
'weights_arc', [self._source_dim, self._target_dim], tf.float32,
tf.random_normal_initializer(stddev=1e-4)))
self._weights.append(tf.get_variable(
'weights_source', [self._source_dim], tf.float32,
tf.random_normal_initializer(stddev=1e-4)))
self._weights.append(tf.get_variable(
'root', [self._source_dim], tf.float32,
tf.random_normal_initializer(stddev=1e-4)))
self._params.extend(self._weights)
self._regularized_weights.extend(self._weights)
# Negative Layer.dim indicates that the dimension is dynamic.
self._layers.append(network_units.Layer(component, 'adjacency', -1))
示例11: get_segmenter_corpus
# 需要導入模塊: from syntaxnet.util import check [as 別名]
# 或者: from syntaxnet.util.check import Eq [as 別名]
def get_segmenter_corpus(input_data_path, use_text_format):
"""Reads in a character corpus for segmenting."""
# Read in the documents.
tf.logging.info('Reading documents...')
if use_text_format:
char_corpus = sentence_io.FormatSentenceReader(input_data_path,
'untokenized-text').corpus()
else:
input_corpus = sentence_io.ConllSentenceReader(input_data_path).corpus()
with tf.Session(graph=tf.Graph()) as tmp_session:
char_input = gen_parser_ops.char_token_generator(input_corpus)
char_corpus = tmp_session.run(char_input)
check.Eq(len(input_corpus), len(char_corpus))
return char_corpus