當前位置: 首頁>>代碼示例>>Python>>正文


Python gen_parser_ops.word_embedding_initializer方法代碼示例

本文整理匯總了Python中syntaxnet.ops.gen_parser_ops.word_embedding_initializer方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_parser_ops.word_embedding_initializer方法的具體用法?Python gen_parser_ops.word_embedding_initializer怎麽用?Python gen_parser_ops.word_embedding_initializer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在syntaxnet.ops.gen_parser_ops的用法示例。


在下文中一共展示了gen_parser_ops.word_embedding_initializer方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testWordEmbeddingInitializer

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializer(self):
    # Provide embeddings for the first three words in the word map.
    records_path = os.path.join(FLAGS.test_tmpdir, 'records1')
    writer = tf.python_io.TFRecordWriter(records_path)
    writer.write(self._token_embedding('.', [1, 2]))
    writer.write(self._token_embedding(',', [3, 4]))
    writer.write(self._token_embedding('the', [5, 6]))
    del writer

    with self.test_session():
      embeddings = gen_parser_ops.word_embedding_initializer(
          vectors=records_path,
          task_context=self._task_context).eval()
    self.assertAllClose(
        np.array([[1. / (1 + 4) ** .5, 2. / (1 + 4) ** .5],
                  [3. / (9 + 16) ** .5, 4. / (9 + 16) ** .5],
                  [5. / (25 + 36) ** .5, 6. / (25 + 36) ** .5]]),
        embeddings[:3,]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:reader_ops_test.py

示例2: AddPretrainedEmbeddings

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def AddPretrainedEmbeddings(self, index, embeddings_path, task_context):
    """Embeddings at the given index will be set to pretrained values."""

    def _Initializer(shape, dtype=tf.float32, partition_info=None):
      """Variable initializer that loads pretrained embeddings."""
      unused_dtype = dtype
      seed1, seed2 = tf.get_seed(self._seed)
      t = gen_parser_ops.word_embedding_initializer(
          vectors=embeddings_path,
          task_context=task_context,
          embedding_init=self._embedding_init,
          seed=seed1,
          seed2=seed2)

      t.set_shape(shape)
      return t

    self._pretrained_embeddings[index] = _Initializer 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:20,代碼來源:graph_builder.py

示例3: AddPretrainedEmbeddings

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def AddPretrainedEmbeddings(self, index, embeddings_path, task_context):
    """Embeddings at the given index will be set to pretrained values."""

    def _Initializer(shape, dtype=tf.float32, partition_info=None):
      """Variable initializer that loads pretrained embeddings."""
      unused_dtype = dtype
      seed1, seed2 = tf.get_seed(self._seed)
      t = gen_parser_ops.word_embedding_initializer(
          vectors=embeddings_path,
          task_context=task_context,
          embedding_init=self._embedding_init,
          cache_vectors_locally=False,
          seed=seed1,
          seed2=seed2)

      t.set_shape(shape)
      return t

    self._pretrained_embeddings[index] = _Initializer 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:21,代碼來源:graph_builder.py

示例4: testWordEmbeddingInitializer

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializer(self):
    def _TokenEmbedding(token, embedding):
      e = dictionary_pb2.TokenEmbedding()
      e.token = token
      e.vector.values.extend(embedding)
      return e.SerializeToString()

    # Provide embeddings for the first three words in the word map.
    records_path = os.path.join(FLAGS.test_tmpdir, 'sstable-00000-of-00001')
    writer = tf.python_io.TFRecordWriter(records_path)
    writer.write(_TokenEmbedding('.', [1, 2]))
    writer.write(_TokenEmbedding(',', [3, 4]))
    writer.write(_TokenEmbedding('the', [5, 6]))
    del writer

    with self.test_session():
      embeddings = gen_parser_ops.word_embedding_initializer(
          vectors=records_path,
          task_context=self._task_context).eval()
    self.assertAllClose(
        np.array([[1. / (1 + 4) ** .5, 2. / (1 + 4) ** .5],
                  [3. / (9 + 16) ** .5, 4. / (9 + 16) ** .5],
                  [5. / (25 + 36) ** .5, 6. / (25 + 36) ** .5]]),
        embeddings[:3,]) 
開發者ID:coderSkyChen,項目名稱:Action_Recognition_Zoo,代碼行數:26,代碼來源:reader_ops_test.py

示例5: testWordEmbeddingInitializer

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializer(self):
    # Provide embeddings for the first three words in the word map.
    records_path = os.path.join(test_flags.temp_dir(), 'records1')
    writer = tf.python_io.TFRecordWriter(records_path)
    writer.write(self._token_embedding('.', [1, 2]))
    writer.write(self._token_embedding(',', [3, 4]))
    writer.write(self._token_embedding('the', [5, 6]))
    del writer

    with self.test_session():
      embeddings = gen_parser_ops.word_embedding_initializer(
          vectors=records_path,
          task_context=self._task_context).eval()
    self.assertAllClose(
        np.array([[1. / (1 + 4) ** .5, 2. / (1 + 4) ** .5],
                  [3. / (9 + 16) ** .5, 4. / (9 + 16) ** .5],
                  [5. / (25 + 36) ** .5, 6. / (25 + 36) ** .5]]),
        embeddings[:3,]) 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:20,代碼來源:reader_ops_test.py

示例6: testWordEmbeddingInitializerVocabularyFileWithDuplicates

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializerVocabularyFileWithDuplicates(self):
    records_path = os.path.join(test_flags.temp_dir(), 'records4')
    writer = tf.python_io.TFRecordWriter(records_path)
    writer.write(self._token_embedding('a', [1, 2, 3]))
    writer.write(self._token_embedding('b', [2, 3, 4]))
    writer.write(self._token_embedding('c', [3, 4, 5]))
    writer.write(self._token_embedding('d', [4, 5, 6]))
    writer.write(self._token_embedding('e', [5, 6, 7]))
    del writer

    vocabulary_path = os.path.join(test_flags.temp_dir(), 'vocabulary4')
    with open(vocabulary_path, 'w') as vocabulary_file:
      vocabulary_file.write('a\nc\ne\nx\ny\nx')  # 'x' duplicated

    with self.test_session():
      with self.assertRaises(Exception):
        gen_parser_ops.word_embedding_initializer(
            vectors=records_path, vocabulary=vocabulary_path).eval() 
開發者ID:generalized-iou,項目名稱:g-tensorflow-models,代碼行數:20,代碼來源:reader_ops_test.py

示例7: testWordEmbeddingInitializerRepeatability

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializerRepeatability(self):
    records_path = os.path.join(FLAGS.test_tmpdir, 'records2')
    writer = tf.python_io.TFRecordWriter(records_path)
    writer.write(self._token_embedding('.', [1, 2, 3]))  # 3 dims
    del writer

    # As long as there is one non-zero seed, the result should be repeatable.
    for seed1, seed2 in [(0, 1), (1, 0), (123, 456)]:
      with tf.Graph().as_default(), self.test_session():
        embeddings1 = gen_parser_ops.word_embedding_initializer(
            vectors=records_path,
            task_context=self._task_context,
            seed=seed1,
            seed2=seed2)
        embeddings2 = gen_parser_ops.word_embedding_initializer(
            vectors=records_path,
            task_context=self._task_context,
            seed=seed1,
            seed2=seed2)

        # The number of terms is based on the word map, which may change if the
        # test corpus is updated.  Just assert that there are some terms.
        self.assertGreater(tf.shape(embeddings1)[0].eval(), 0)
        self.assertGreater(tf.shape(embeddings2)[0].eval(), 0)
        self.assertEqual(tf.shape(embeddings1)[1].eval(), 3)
        self.assertEqual(tf.shape(embeddings2)[1].eval(), 3)
        self.assertAllEqual(embeddings1.eval(), embeddings2.eval()) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:29,代碼來源:reader_ops_test.py

示例8: testWordEmbeddingInitializerFailIfNeitherTaskContextOrVocabulary

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializerFailIfNeitherTaskContextOrVocabulary(self):
    with self.test_session():
      with self.assertRaises(Exception):
        gen_parser_ops.word_embedding_initializer(vectors='/dev/null').eval() 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:6,代碼來源:reader_ops_test.py

示例9: testWordEmbeddingInitializerFailIfBothTaskContextAndVocabulary

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializerFailIfBothTaskContextAndVocabulary(self):
    with self.test_session():
      with self.assertRaises(Exception):
        gen_parser_ops.word_embedding_initializer(
            vectors='/dev/null',
            task_context='/dev/null',
            vocabulary='/dev/null').eval() 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:9,代碼來源:reader_ops_test.py

示例10: testWordEmbeddingInitializerVocabularyFile

# 需要導入模塊: from syntaxnet.ops import gen_parser_ops [as 別名]
# 或者: from syntaxnet.ops.gen_parser_ops import word_embedding_initializer [as 別名]
def testWordEmbeddingInitializerVocabularyFile(self):
    records_path = os.path.join(FLAGS.test_tmpdir, 'records3')
    writer = tf.python_io.TFRecordWriter(records_path)
    writer.write(self._token_embedding('a', [1, 2, 3]))
    writer.write(self._token_embedding('b', [2, 3, 4]))
    writer.write(self._token_embedding('c', [3, 4, 5]))
    writer.write(self._token_embedding('d', [4, 5, 6]))
    writer.write(self._token_embedding('e', [5, 6, 7]))
    del writer

    vocabulary_path = os.path.join(FLAGS.test_tmpdir, 'vocabulary3')
    with open(vocabulary_path, 'w') as vocabulary_file:
      vocabulary_file.write('a\nc\ne\nx\n')  # 'x' not in pretrained embeddings

    # Enumerate a variety of configurations.
    for cache_vectors_locally in [False, True]:
      for num_special_embeddings in [None, 1, 2, 5]:  # None = use default of 3
        with self.test_session():
          embeddings = gen_parser_ops.word_embedding_initializer(
              vectors=records_path,
              vocabulary=vocabulary_path,
              cache_vectors_locally=cache_vectors_locally,
              num_special_embeddings=num_special_embeddings)

          # Expect 4 embeddings from the vocabulary plus special embeddings.
          expected_num_embeddings = 4 + (num_special_embeddings or 3)
          self.assertAllEqual([expected_num_embeddings, 3],
                              tf.shape(embeddings).eval())

          # The first 3 embeddings should be pretrained.
          norm_a = (1.0 + 4.0 + 9.0) ** 0.5
          norm_c = (9.0 + 16.0 + 25.0) ** 0.5
          norm_e = (25.0 + 36.0 + 49.0) ** 0.5
          self.assertAllClose([[1.0 / norm_a, 2.0 / norm_a, 3.0 / norm_a],
                               [3.0 / norm_c, 4.0 / norm_c, 5.0 / norm_c],
                               [5.0 / norm_e, 6.0 / norm_e, 7.0 / norm_e]],
                              embeddings[:3].eval()) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:39,代碼來源:reader_ops_test.py


注:本文中的syntaxnet.ops.gen_parser_ops.word_embedding_initializer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。