本文整理匯總了Python中sympy.pi方法的典型用法代碼示例。如果您正苦於以下問題:Python sympy.pi方法的具體用法?Python sympy.pi怎麽用?Python sympy.pi使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy
的用法示例。
在下文中一共展示了sympy.pi方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _eigen_components
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def _eigen_components(self):
components = [(0, np.diag([1, 1, 1, 0, 1, 0, 0, 1]))]
nontrivial_part = np.zeros((3, 3), dtype=np.complex128)
for ij, w in zip([(1, 2), (0, 2), (0, 1)], self.weights):
nontrivial_part[ij] = w
nontrivial_part[ij[::-1]] = w.conjugate()
assert np.allclose(nontrivial_part, nontrivial_part.conj().T)
eig_vals, eig_vecs = np.linalg.eigh(nontrivial_part)
for eig_val, eig_vec in zip(eig_vals, eig_vecs.T):
exp_factor = -eig_val / np.pi
proj = np.zeros((8, 8), dtype=np.complex128)
nontrivial_indices = np.array([3, 5, 6], dtype=np.intp)
proj[nontrivial_indices[:, np.newaxis], nontrivial_indices] = (
np.outer(eig_vec.conjugate(), eig_vec))
components.append((exp_factor, proj))
return components
示例2: sympy_to_grim
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def sympy_to_grim(expr, **kwargs):
import sympy
assert isinstance(expr, sympy.Expr)
if expr.is_Integer:
return Expr(int(expr))
if expr.is_Symbol:
return Expr(symbol_name=expr.name)
if expr is sympy.pi:
return Pi
if expr is sympy.E:
return ConstE
if expr is sympy.I:
return ConstI
if expr.is_Add:
args = [sympy_to_grim(x, **kwargs) for x in expr.args]
return Add(*args)
if expr.is_Mul:
args = [sympy_to_grim(x, **kwargs) for x in expr.args]
return Mul(*args)
if expr.is_Pow:
args = [sympy_to_grim(x, **kwargs) for x in expr.args]
b, e = args
return Pow(b, e)
raise NotImplementedError("converting %s to Grim", type(expr))
示例3: grad_log_norm_symbolic
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def grad_log_norm_symbolic(self):
import sympy
D = self.dimension
X = self.eigenvalues_symbol
B = [1] * D
for d in range(D):
for dd in range(D):
if d != dd:
B[d] = B[d] * (X[d] - X[dd])
B = [1 / b for b in B]
p_D = sympy.pi ** D
tmp = [b * sympy.exp(x_) for x_, b in zip(X, B)]
tmp = sum(tmp)
symbolic_norm_for_bingham = 2 * p_D * tmp
return [
sympy.simplify(sympy.diff(
sympy.log(symbolic_norm_for_bingham),
x_
))
for x_ in X
]
示例4: test_constants
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def test_constants():
assert sympify(sympy.E) == E
assert sympy.E == E._sympy_()
assert sympify(sympy.pi) == pi
assert sympy.pi == pi._sympy_()
assert sympify(sympy.GoldenRatio) == GoldenRatio
assert sympy.GoldenRatio == GoldenRatio._sympy_()
assert sympify(sympy.Catalan) == Catalan
assert sympy.Catalan == Catalan._sympy_()
assert sympify(sympy.EulerGamma) == EulerGamma
assert sympy.EulerGamma == EulerGamma._sympy_()
assert sympify(sympy.oo) == oo
assert sympy.oo == oo._sympy_()
assert sympify(sympy.zoo) == zoo
assert sympy.zoo == zoo._sympy_()
assert sympify(sympy.nan) == nan
assert sympy.nan == nan._sympy_()
示例5: xiu
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def xiu(n):
points = []
for k in range(n + 1):
pt = []
# Slight adaptation:
# The article has points for the weight 1/sqrt(2*pi) exp(−x**2/2)
# so divide by sqrt(2) to adapt for 1/sqrt(pi) exp(−x ** 2)
for r in range(1, n // 2 + 1):
alpha = (2 * r * k * pi) / (n + 1)
pt += [cos(alpha), sin(alpha)]
if n % 2 == 1:
pt += [(-1) ** k / sqrt(2)]
points.append(pt)
points = numpy.array(points)
weights = numpy.full(n + 1, frac(1, n + 1))
return Enr2Scheme("Xiu", n, weights, points, 2, source)
示例6: stroud_s2_9_3
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def stroud_s2_9_3():
# spherical product gauss 9
sqrt = numpy.vectorize(sympy.sqrt)
pm_ = numpy.array([+1, -1])
cos = numpy.vectorize(sympy.cos)
sin = numpy.vectorize(sympy.sin)
frac = sympy.Rational
pi = sympy.pi
r1, r2 = sqrt((6 - pm_ * sqrt(6)) / 10)
a = (numpy.arange(10) + 1) * pi / 5
x = numpy.array([cos(a), sin(a)]).T
B0 = frac(1, 9)
B1, B2 = (16 + pm_ * sqrt(6)) / 360
data = [(B0, z(2)), (B1, r1 * x), (B2, r2 * x)]
points, weights = untangle(data)
return S2Scheme("Stroud S2 9-3", weights, points, 9, _source)
示例7: albrecht_4
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def albrecht_4():
sqrt111 = sqrt(111)
rho1, rho2 = sqrt((96 - pm_ * 4 * sqrt(111)) / 155)
alpha = 2 * numpy.arange(6) * pi / 6
s = numpy.array([cos(alpha), sin(alpha)]).T
alpha = (2 * numpy.arange(6) + 1) * pi / 6
t = numpy.array([cos(alpha), sin(alpha)]).T
B0 = frac(251, 2304)
B1, B2 = (110297 + pm_ * 5713 * sqrt111) / 2045952
C = frac(125, 3072)
data = [(B0, z(2)), (B1, rho1 * s), (B2, rho2 * s), (C, sqrt(frac(4, 5)) * t)]
points, weights = untangle(data)
return S2Scheme("Albrecht 4", weights, points, 9, _source)
示例8: hammer_stroud_18
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def hammer_stroud_18():
# ENH The article only gives floats, but really this is the spherical-product gauss
# formula as described in Strouds book, S2 7-2.
#
# data = [
# (frac(1, 16), fs([0.4247082002778669, 0.1759198966061612])),
# (frac(1, 16), fs([0.8204732385702833, 0.3398511429799874])),
# ]
r1, r2 = sqrt((3 - pm_ * sqrt(3)) / 6)
a = (2 * numpy.arange(8) + 1) * pi / 8
x = numpy.array([cos(a), sin(a)]).T
data = [(frac(1, 16), r1 * x), (frac(1, 16), r2 * x)]
points, weights = untangle(data)
return S2Scheme("Hammer-Stroud 18", weights, points, 7, _source)
示例9: hammer_stroud_21
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def hammer_stroud_21():
alpha0 = 0.0341505695624825 / numpy.pi
alpha1 = 0.0640242008621985 / numpy.pi
alpha2 = 0.0341505695624825 / numpy.pi
data = [
(alpha0, fs([0.2584361661674054, 0.0514061496288813])),
(alpha1, fs([0.5634263397544869, 0.1120724670846205])),
(alpha1, fs([0.4776497869993547, 0.3191553840796721])),
(alpha1, fs([0.8028016728473508, 0.1596871812824163])),
(alpha1, fs([0.6805823955716280, 0.4547506180649039])),
(alpha2, fs([0.2190916025980981, 0.1463923286035535])),
(alpha2, fs([0.9461239423417719, 0.1881957532057769])),
(alpha2, fs([0.8020851487551318, 0.5359361621905023])),
]
points, weights = untangle(data)
return S2Scheme("Hammer-Stroud 21", weights, points, 15, _source)
示例10: chebyshev_gauss_1
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def chebyshev_gauss_1(n, mode="numpy"):
"""Chebyshev-Gauss quadrature for \\int_{-1}^1 f(x) / sqrt(1+x^2) dx.
"""
degree = n if n % 2 == 1 else n + 1
if mode == "numpy":
points = numpy.cos((2 * numpy.arange(1, n + 1) - 1) / (2 * n) * numpy.pi)
weights = numpy.full(n, numpy.pi / n)
elif mode == "sympy":
points = numpy.array(
[
sympy.cos(sympy.Rational(2 * k - 1, 2 * n) * sympy.pi)
for k in range(1, n + 1)
]
)
weights = numpy.full(n, sympy.pi / n)
else:
assert mode == "mpmath"
points = numpy.array(
[mp.cos(mp.mpf(2 * k - 1) / (2 * n) * mp.pi) for k in range(1, n + 1)]
)
weights = numpy.full(n, mp.pi / n)
return C1Scheme("Chebyshev-Gauss 1", degree, weights, points)
示例11: integrate_monomial_over_unit_nsphere
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def integrate_monomial_over_unit_nsphere(k, symbolic=False):
frac = sympy.Rational if symbolic else lambda a, b: a / b
if any(a % 2 == 1 for a in k):
return 0
n = len(k)
if all(a == 0 for a in k):
return volume_nsphere(n - 1, symbolic, r=1)
# find first nonzero
idx = next(i for i, j in enumerate(k) if j > 0)
alpha = frac(k[idx] - 1, sum(k) + n - 2)
k2 = k.copy()
k2[idx] -= 2
return integrate_monomial_over_unit_nsphere(k2, symbolic) * alpha
# n sqrt(pi) ** 2 / gamma(n/2 + 1)
示例12: _format_exponent_as_angle
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def _format_exponent_as_angle(
self,
args: 'protocols.CircuitDiagramInfoArgs',
order: int = 2,
) -> str:
"""Returns string with exponent expressed as angle in radians.
Args:
args: CircuitDiagramInfoArgs describing the desired drawing style.
order: Exponent corresponding to full rotation by 2π.
Returns:
Angle in radians corresponding to the exponent of self and
formatted according to style described by args.
"""
exponent = self._diagram_exponent(args, ignore_global_phase=False)
pi = sympy.pi if protocols.is_parameterized(exponent) else np.pi
return args.format_radians(radians=2 * pi * exponent / order)
# virtual method
示例13: __repr__
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def __repr__(self) -> str:
if self._global_shift == -0.5:
if protocols.is_parameterized(self._exponent):
return 'cirq.rz({})'.format(
proper_repr(sympy.pi * self._exponent))
return 'cirq.rz(np.pi*{!r})'.format(self._exponent)
if self._global_shift == 0:
if self._exponent == 0.25:
return 'cirq.T'
if self._exponent == -0.25:
return '(cirq.T**-1)'
if self._exponent == 0.5:
return 'cirq.S'
if self._exponent == -0.5:
return '(cirq.S**-1)'
if self._exponent == 1:
return 'cirq.Z'
return '(cirq.Z**{})'.format(proper_repr(self._exponent))
return (
'cirq.ZPowGate(exponent={}, '
'global_shift={!r})'
).format(proper_repr(self._exponent), self._global_shift)
示例14: _apply_unitary_
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def _apply_unitary_(self, args: 'protocols.ApplyUnitaryArgs'
) -> Optional[np.ndarray]:
if protocols.is_parameterized(self):
return NotImplemented
c = np.cos(np.pi * self._exponent / 2)
s = np.sin(np.pi * self._exponent / 2)
f = np.exp(2j * np.pi * self._phase_exponent)
matrix = np.array([[c, 1j * s * f], [1j * s * f.conjugate(), c]])
zo = args.subspace_index(0b01)
oz = args.subspace_index(0b10)
linalg.apply_matrix_to_slices(args.target_tensor,
matrix, [oz, zo],
out=args.available_buffer)
return args.available_buffer
示例15: _pauli_expansion_
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import pi [as 別名]
def _pauli_expansion_(self) -> value.LinearDict[str]:
if self._is_parameterized_():
return NotImplemented
expansion = protocols.pauli_expansion(self._iswap)
assert set(expansion.keys()).issubset({'II', 'XX', 'YY', 'ZZ'})
assert np.isclose(expansion['XX'], expansion['YY'])
v = (expansion['XX'] + expansion['YY']) / 2
phase_angle = np.pi * self.phase_exponent
c, s = np.cos(2 * phase_angle), np.sin(2 * phase_angle)
return value.LinearDict({
'II': expansion['II'],
'XX': c * v,
'YY': c * v,
'XY': s * v,
'YX': -s * v,
'ZZ': expansion['ZZ'],
})