本文整理匯總了Python中sympy.integrate方法的典型用法代碼示例。如果您正苦於以下問題:Python sympy.integrate方法的具體用法?Python sympy.integrate怎麽用?Python sympy.integrate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy
的用法示例。
在下文中一共展示了sympy.integrate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: integrate
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def integrate(f, a, b, **kwargs):
"""Symbolically calculate the integrals
int_a^b f_k(x) dx.
Useful for computing the moments `w(x) * P_k(x)`, e.g.,
moments = quadpy.tools.integrate(
lambda x: [x**k for k in range(5)],
-1, +1
)
Any keyword arguments are passed directly to `sympy.integrate` function.
"""
x = sympy.Symbol("x")
return numpy.array([sympy.integrate(fun, (x, a, b), **kwargs) for fun in f(x)])
示例2: newton_cotes_open
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def newton_cotes_open(index, **kwargs):
"""
Open Newton-Cotes formulae.
<https://math.stackexchange.com/a/1959071/36678>
"""
points = numpy.linspace(-1.0, 1.0, index + 2)[1:-1]
degree = index if (index + 1) % 2 == 0 else index - 1
#
n = index + 1
weights = numpy.empty(n - 1)
t = sympy.Symbol("t")
for r in range(1, n):
# Compare with get_weights().
f = sympy.prod([(t - i) for i in range(1, n) if i != r])
alpha = (
2
* (-1) ** (n - r + 1)
* sympy.integrate(f, (t, 0, n), **kwargs)
/ (math.factorial(r - 1) * math.factorial(n - 1 - r))
/ n
)
weights[r - 1] = alpha
return C1Scheme("Newton-Cotes (open)", degree, weights, points)
示例3: _integrate_exact
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def _integrate_exact(f, triangle):
#
# Note that
#
# \int_T f(x) dx = \int_T0 |J(xi)| f(P(xi)) dxi
#
# with
#
# P(xi) = x0 * (1-xi[0]-xi[1]) + x1 * xi[0] + x2 * xi[1].
#
# and T0 being the reference triangle [(0.0, 0.0), (1.0, 0.0), (0.0,
# 1.0)].
# The determinant of the transformation matrix J equals twice the volume of
# the triangle. (See, e.g.,
# <http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF>).
#
xi = sympy.DeferredVector("xi")
x_xi = (
+triangle[0] * (1 - xi[0] - xi[1]) + triangle[1] * xi[0] + triangle[2] * xi[1]
)
abs_det_J = 2 * quadpy.t2.volume(triangle)
exact = sympy.integrate(
sympy.integrate(abs_det_J * f(x_xi), (xi[1], 0, 1 - xi[0])), (xi[0], 0, 1)
)
return float(exact)
示例4: test_scheme
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def test_scheme(scheme):
assert scheme.points.dtype in [numpy.float64, numpy.int64], scheme.name
assert scheme.weights.dtype in [numpy.float64, numpy.int64], scheme.name
print(scheme)
# Test integration until we get to a polynomial degree `d` that can no longer be
# integrated exactly. The scheme's degree is `d-1`.
pyra = numpy.array(
[[-1, -1, -1], [+1, -1, -1], [+1, +1, -1], [-1, +1, -1], [0, 0, 1]]
)
degree, err = check_degree(
lambda poly: scheme.integrate(poly, pyra),
lambda k: _integrate_exact(k, pyra),
3,
scheme.degree + 1,
tol=scheme.test_tolerance,
)
assert (
degree >= scheme.degree
), "{} -- Observed: {}, expected: {} (max err: {:.3e})".format(
scheme.name, degree, scheme.degree, err
)
示例5: _integrate_exact
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def _integrate_exact(f, c2):
xi = sympy.DeferredVector("xi")
pxi = (
c2[0] * 0.25 * (1.0 + xi[0]) * (1.0 + xi[1])
+ c2[1] * 0.25 * (1.0 - xi[0]) * (1.0 + xi[1])
+ c2[2] * 0.25 * (1.0 - xi[0]) * (1.0 - xi[1])
+ c2[3] * 0.25 * (1.0 + xi[0]) * (1.0 - xi[1])
)
pxi = [sympy.expand(pxi[0]), sympy.expand(pxi[1])]
# determinant of the transformation matrix
det_J = +sympy.diff(pxi[0], xi[0]) * sympy.diff(pxi[1], xi[1]) - sympy.diff(
pxi[1], xi[0]
) * sympy.diff(pxi[0], xi[1])
# we cannot use abs(), see <https://github.com/sympy/sympy/issues/4212>.
abs_det_J = sympy.Piecewise((det_J, det_J >= 0), (-det_J, det_J < 0))
g_xi = f(pxi)
exact = sympy.integrate(
sympy.integrate(abs_det_J * g_xi, (xi[1], -1, 1)), (xi[0], -1, 1)
)
return float(exact)
示例6: test_scheme
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def test_scheme(scheme):
assert scheme.points.dtype in [numpy.float64, numpy.int64], scheme.name
assert scheme.weights.dtype in [numpy.float64, numpy.int64], scheme.name
print(scheme)
# Test integration until we get to a polynomial degree `d` that can no
# longer be integrated exactly. The scheme's degree is `d-1`.
t3 = numpy.array(
[[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]
)
degree, err = check_degree(
lambda poly: scheme.integrate(poly, t3),
integrate_monomial_over_unit_simplex,
3,
scheme.degree + 1,
scheme.test_tolerance,
)
assert (
degree >= scheme.degree
), "{} -- observed: {}, expected: {} (max err: {:.3e})".format(
scheme.name, degree, scheme.degree, err
)
示例7: test_gaussian
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def test_gaussian():
"""
Make sure that symfit.distributions.Gaussians produces the expected
sympy expression.
"""
x0 = Parameter()
sig = Parameter(positive=True)
x = Variable()
new = sympy.exp(-(x - x0)**2/(2*sig**2))/sympy.sqrt((2*sympy.pi*sig**2))
assert isinstance(new, sympy.Expr)
g = Gaussian(x, x0, sig)
assert issubclass(g.__class__, sympy.Expr)
assert new == g
# A pdf should always integrate to 1 on its domain
assert sympy.integrate(g, (x, -sympy.oo, sympy.oo)) == 1
示例8: test_exp
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def test_exp():
"""
Make sure that symfit.distributions.Exp produces the expected
sympy expression.
"""
l = Parameter(positive=True)
x = Variable()
new = l * sympy.exp(- l * x)
assert isinstance(new, sympy.Expr)
e = Exp(x, l)
assert issubclass(e.__class__, sympy.Expr)
assert new == e
# A pdf should always integrate to 1 on its domain
assert sympy.integrate(e, (x, 0, sympy.oo)) == 1
示例9: _pressure_approx
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def _pressure_approx(N):
ζ, ζ_sl = sympy.symbols('ζ ζ_sl', real=True, positive=True)
def coefficient(n):
Sn = _legendre(n, ζ)
norm_square = sympy.integrate(Sn**2, (ζ, 0, 1))
return sympy.integrate((ζ_sl - ζ) * Sn, (ζ, 0, ζ_sl)) / norm_square
polynomial = sum([coefficient(n) * _legendre(n, ζ) for n in range(N)])
return sympy.lambdify((ζ, ζ_sl), sympy.simplify(polynomial))
示例10: quadrature_degree
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def quadrature_degree(self, u, h, **kwargs):
r"""Return the quadrature degree necessary to integrate the action
functional accurately
Firedrake uses a very conservative algorithm for estimating the
number of quadrature points necessary to integrate a given
expression. By exploiting known structure of the problem, we can
reduce the number of quadrature points while preserving accuracy.
"""
xdegree_u, zdegree_u = u.ufl_element().degree()
degree_h = h.ufl_element().degree()[0]
return (3 * (xdegree_u - 1) + 2 * degree_h,
3 * max(zdegree_u - 1, 0) + zdegree_u + 1)
示例11: stieltjes
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def stieltjes(w, a, b, n, **kwargs):
t = sympy.Symbol("t")
alpha = n * [None]
beta = n * [None]
mu = n * [None]
pi = n * [None]
k = 0
pi[k] = 1
mu[k] = sympy.integrate(pi[k] ** 2 * w(t), (t, a, b), **kwargs)
alpha[k] = sympy.integrate(t * pi[k] ** 2 * w(t), (t, a, b), **kwargs) / mu[k]
beta[k] = mu[0] # not used, by convention mu[0]
k = 1
pi[k] = (t - alpha[k - 1]) * pi[k - 1]
mu[k] = sympy.integrate(pi[k] ** 2 * w(t), (t, a, b), **kwargs)
alpha[k] = sympy.integrate(t * pi[k] ** 2 * w(t), (t, a, b), **kwargs) / mu[k]
beta[k] = mu[k] / mu[k - 1]
for k in range(2, n):
pi[k] = (t - alpha[k - 1]) * pi[k - 1] - beta[k - 1] * pi[k - 2]
mu[k] = sympy.integrate(pi[k] ** 2 * w(t), (t, a, b), **kwargs)
alpha[k] = sympy.integrate(t * pi[k] ** 2 * w(t), (t, a, b), **kwargs) / mu[k]
beta[k] = mu[k] / mu[k - 1]
return alpha, beta
示例12: newton_cotes_closed
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def newton_cotes_closed(index, **kwargs):
"""
Closed Newton-Cotes formulae.
<https://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas#Closed_Newton.E2.80.93Cotes_formulae>,
<http://mathworld.wolfram.com/Newton-CotesFormulas.html>.
"""
points = numpy.linspace(-1.0, 1.0, index + 1)
degree = index + 1 if index % 2 == 0 else index
# Formula (26) from
# <http://mathworld.wolfram.com/Newton-CotesFormulas.html>.
# Note that Sympy carries out all operations in rationals, i.e.,
# _exactly_. Only at the end, the rational is converted into a float.
n = index
weights = numpy.empty(n + 1)
t = sympy.Symbol("t")
for r in range(n + 1):
# Compare with get_weights().
f = sympy.prod([(t - i) for i in range(n + 1) if i != r])
alpha = (
2
* (-1) ** (n - r)
* sympy.integrate(f, (t, 0, n), **kwargs)
/ (math.factorial(r) * math.factorial(n - r))
/ index
)
weights[r] = alpha
return C1Scheme("Newton-Cotes (closed)", degree, weights, points)
示例13: test_scheme
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def test_scheme(scheme):
# Test integration until we get to a polynomial degree `d` that can no longer be
# integrated exactly. The scheme's degree is `d-1`.
assert scheme.points.dtype in [numpy.float64, numpy.int64], scheme.name
assert scheme.weights.dtype in [numpy.float64, numpy.int64], scheme.name
print(scheme)
def eval_orthopolys(x):
return numpy.concatenate(
orthopy.quadrilateral.tree(x, scheme.degree + 1, symbolic=False)
)
quad = quadpy.c2.rectangle_points([-1.0, +1.0], [-1.0, +1.0])
vals = scheme.integrate(eval_orthopolys, quad)
# Put vals back into the tree structure:
# len(approximate[k]) == k+1
approximate = [
vals[k * (k + 1) // 2 : (k + 1) * (k + 2) // 2]
for k in range(scheme.degree + 2)
]
exact = [numpy.zeros(k + 1) for k in range(scheme.degree + 2)]
exact[0][0] = 2.0
degree, err = check_degree_ortho(approximate, exact, abs_tol=scheme.test_tolerance)
assert (
degree >= scheme.degree
), "{} -- observed: {}, expected: {} (max err: {:.3e})".format(
scheme.name, degree, scheme.degree, err
)
示例14: _integrate_exact
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def _integrate_exact(f, t3):
#
# Note that
#
# \int_T f(x) dx = \int_T0 |J(xi)| f(P(xi)) dxi
#
# with
#
# P(xi) = x0 * (1-xi[0]-xi[1]) + x1 * xi[0] + x2 * xi[1].
#
# and T0 being the reference t3 [(0.0, 0.0), (1.0, 0.0), (0.0,
# 1.0)].
# The determinant of the transformation matrix J equals twice the volume of
# the t3. (See, e.g.,
# <http://math2.uncc.edu/~shaodeng/TEACHING/math5172/Lectures/Lect_15.PDF>).
#
xi = sympy.DeferredVector("xi")
x_xi = (
+t3[0] * (1 - xi[0] - xi[1] - xi[2])
+ t3[1] * xi[0]
+ t3[2] * xi[1]
+ t3[3] * xi[2]
)
abs_det_J = 6 * quadpy.t3.volume(t3)
exact = sympy.integrate(
sympy.integrate(
sympy.integrate(abs_det_J * f(x_xi), (xi[2], 0, 1 - xi[0] - xi[1])),
(xi[1], 0, 1 - xi[0]),
),
(xi[0], 0, 1),
)
return float(exact)
示例15: phi
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import integrate [as 別名]
def phi(i, t):
if i == 0:
return 1 # Initial history x(t)=1 on [-1,0]
else:
return phi(i-1, i-1) - integrate(phi(i-1, xi-1), (xi, i-1, t))
開發者ID:springer-math,項目名稱:dynamical-systems-with-applications-using-python,代碼行數:7,代碼來源:Program_12a.py