本文整理匯總了Python中sympy.factorial方法的典型用法代碼示例。如果您正苦於以下問題:Python sympy.factorial方法的具體用法?Python sympy.factorial怎麽用?Python sympy.factorial使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy
的用法示例。
在下文中一共展示了sympy.factorial方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: probability
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def probability(self, event):
# Specializations for optimization.
if isinstance(event, FiniteProductEvent):
assert len(self._spaces) == len(event.events)
return sympy.prod([
space.probability(event_slice)
for space, event_slice in zip(self._spaces, event.events)])
if isinstance(event, CountLevelSetEvent) and self.all_spaces_equal():
space = self._spaces[0]
counts = event.counts
probabilities = {
value: space.probability(DiscreteEvent({value}))
for value in six.iterkeys(counts)
}
num_events = sum(six.itervalues(counts))
assert num_events == len(self._spaces)
# Multinomial coefficient:
coeff = (
sympy.factorial(num_events) / sympy.prod(
[sympy.factorial(i) for i in six.itervalues(counts)]))
return coeff * sympy.prod([
pow(probabilities[value], counts[value])
for value in six.iterkeys(counts)
])
raise ValueError('Unhandled event type {}'.format(type(event)))
示例2: test_factorial
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def test_factorial():
n = sympy.Symbol('n')
assert theano_code(sympy.factorial(n))
示例3: compute_dobrodeev
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def compute_dobrodeev(n, I0, I2, I22, I4, pm_type, i, j, k, symbolic=False):
"""Compute some helper quantities used in
L.N. Dobrodeev,
Cubature rules with equal coefficients for integrating functions with
respect to symmetric domains,
USSR Computational Mathematics and Mathematical Physics,
Volume 18, Issue 4, 1978, Pages 27-34,
<https://doi.org/10.1016/0041-5553(78)90064-2>.
"""
t = 1 if pm_type == "I" else -1
fact = sympy.factorial if symbolic else math.factorial
sqrt = sympy.sqrt if symbolic else numpy.sqrt
L = comb(n, i) * 2 ** i
M = fact(n) // (fact(j) * fact(k) * fact(n - j - k)) * 2 ** (j + k)
N = L + M
F = I22 / I0 - I2 ** 2 / I0 ** 2 + (I4 / I0 - I22 / I0) / n
R = (
-(j + k - i) / i * I2 ** 2 / I0 ** 2
+ (j + k - 1) / n * I4 / I0
- (n - 1) / n * I22 / I0
)
H = (
1
/ i
* (
(j + k - i) * I2 ** 2 / I0 ** 2
+ (j + k) / n * ((i - 1) * I4 / I0 - (n - 1) * I22 / I0)
)
)
Q = L / M * R + H - t * 2 * I2 / I0 * (j + k - i) / i * sqrt(L / M * F)
G = 1 / N
a = sqrt(n / i * (I2 / I0 + t * sqrt(M / L * F)))
b = sqrt(n / (j + k) * (I2 / I0 - t * sqrt(L / M * F) + t * sqrt(k / j * Q)))
c = sqrt(n / (j + k) * (I2 / I0 - t * sqrt(L / M * F) - t * sqrt(j / k * Q)))
return G, a, b, c
示例4: comb
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def comb(a, b):
if sys.version < "3.8":
try:
binom = math.factorial(a) // math.factorial(b) // math.factorial(a - b)
except ValueError:
binom = 0
return binom
return math.comb(a, b)
示例5: gamma_n_2
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def gamma_n_2(n, symbolic):
# gamma(n / 2)
frac = sympy.Rational if symbolic else lambda a, b: a / b
sqrt = sympy.sqrt if symbolic else math.sqrt
pi = sympy.pi if symbolic else math.pi
if n % 2 == 0:
return math.factorial(n // 2 - 1)
n2 = n // 2
return frac(math.factorial(2 * n2), 4 ** n2 * math.factorial(n2)) * sqrt(pi)
示例6: __init__
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def __init__(self, **traits):
TaylorPoly.__init__(self, **traits)
#Declare the analytical function
Z=sympy.Function("Z")
Ax,Ay,Kx,Ky=sympy.symbols(("Ax","Ay","Kx","Ky"))
x, y =sympy.symbols('xy')
Z=(Ax*x**2+Ay*y**2)/(1+sympy.sqrt(1-(1+Kx)*Ax**2*x**2-(1+Ky)*Ay**2*y**2));
#Calculate taylor polynomial coheficients
cohef=[[Z, ],]
order=self.n
for i in range(0, order+1, 2):
if i!=0:
cohef.append([sympy.diff(cohef[i/2-1][0], y, 2), ])
for j in range(2, order-i+1, 2):
cohef[i/2].append(sympy.diff(cohef[i/2][j/2 -1], x, 2))
A_x=self.Ax
A_y=self.Ay
K_x=self.Kx
K_y=self.Ky
c=zeros((self.n+1, self.n+1))
for i in range(0, order/2+1):
for j in range(0,order/2- i+1):
cohef[j][i]=cohef[j][i].subs(x, 0).subs(y, 0).subs(Ax, A_x).subs(Ay, A_y).subs(Kx, K_x).subs(Ky, K_y)/(sympy.factorial(2*i)*sympy.factorial(2*j))
c[2*j, 2*i]=cohef[j][i].evalf()
# Add the high order corrections
if len(self.ho_cohef.shape)==2:
cx, cy = c.shape
dx, dy =self.ho_cohef.shape
mx=array((cx, dx)).max()
my=array((cy, dy)).max()
self.cohef=zeros((mx, my))
self.cohef[0:cx, 0:cy]=c
self.cohef[0:dy, 0:dy]=self.cohef[0:dy, 0:dy]+self.ho_cohef
else:
self.cohef=c
示例7: convert_postfix
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def convert_postfix(postfix):
if hasattr(postfix, 'exp'):
exp_nested = postfix.exp()
else:
exp_nested = postfix.exp_nofunc()
exp = convert_exp(exp_nested)
for op in postfix.postfix_op():
if op.BANG():
if isinstance(exp, list):
raise Exception("Cannot apply postfix to derivative")
exp = sympy.factorial(exp, evaluate=False)
elif op.eval_at():
ev = op.eval_at()
at_b = None
at_a = None
if ev.eval_at_sup():
at_b = do_subs(exp, ev.eval_at_sup())
if ev.eval_at_sub():
at_a = do_subs(exp, ev.eval_at_sub())
if at_b != None and at_a != None:
exp = sympy.Add(at_b, -1 * at_a, evaluate=False)
elif at_b != None:
exp = at_b
elif at_a != None:
exp = at_a
return exp
示例8: _get_Ylm
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import factorial [as 別名]
def _get_Ylm(self, l, m):
"""
Compute an expression for spherical harmonic of order (l,m)
in terms of Cartesian unit vectors, :math:`\hat{z}`
and :math:`\hat{x} + i \hat{y}`
Parameters
----------
l : int
the degree of the harmonic
m : int
the order of the harmonic; |m| < l
Returns
-------
expr :
a sympy expression that corresponds to the
requested Ylm
References
----------
https://en.wikipedia.org/wiki/Spherical_harmonics
"""
import sympy as sp
# the relevant cartesian and spherical symbols
x, y, z, r = sp.symbols('x y z r', real=True, positive=True)
xhat, yhat, zhat = sp.symbols('xhat yhat zhat', real=True, positive=True)
xpyhat = sp.Symbol('xpyhat', complex=True)
phi, theta = sp.symbols('phi theta')
defs = [(sp.sin(phi), y/sp.sqrt(x**2+y**2)),
(sp.cos(phi), x/sp.sqrt(x**2+y**2)),
(sp.cos(theta), z/sp.sqrt(x**2 + y**2 + z**2))
]
# the cos(theta) dependence encoded by the associated Legendre poly
expr = sp.assoc_legendre(l, m, sp.cos(theta))
# the exp(i*m*phi) dependence
expr *= sp.expand_trig(sp.cos(m*phi)) + sp.I*sp.expand_trig(sp.sin(m*phi))
# simplifying optimizations
expr = sp.together(expr.subs(defs)).subs(x**2 + y**2 + z**2, r**2)
expr = expr.expand().subs([(x/r, xhat), (y/r, yhat), (z/r, zhat)])
expr = expr.factor().factor(extension=[sp.I]).subs(xhat+sp.I*yhat, xpyhat)
expr = expr.subs(xhat**2 + yhat**2, 1-zhat**2).factor()
# and finally add the normalization
amp = sp.sqrt((2*l+1) / (4*numpy.pi) * sp.factorial(l-m) / sp.factorial(l+m))
expr *= amp
return expr