本文整理匯總了Python中sympy.exp方法的典型用法代碼示例。如果您正苦於以下問題:Python sympy.exp方法的具體用法?Python sympy.exp怎麽用?Python sympy.exp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy
的用法示例。
在下文中一共展示了sympy.exp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_construct_lazy
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_construct_lazy(self):
# adapted from https://gist.github.com/raddy/bd0e977dc8437a4f8276
spot, strike, vol, dte, rate, cp = sy.symbols('spot strike vol dte rate cp')
T = dte / 260.
N = syNormal('N', 0.0, 1.0)
d1 = (sy.ln(spot / strike) + (0.5 * vol ** 2) * T) / (vol * sy.sqrt(T))
d2 = d1 - vol * sy.sqrt(T)
TimeValueExpr = sy.exp(-rate * T) * (cp * spot * cdf(N)(cp * d1) - cp * strike * cdf(N)(cp * d2))
PriceClass = ts.construct_lazy(TimeValueExpr)
price = PriceClass(spot=210.59, strike=205, vol=14.04, dte=4, rate=.2175, cp=-1)
x = price.evaluate()()
assert price.evaluate()() == x
price.strike = 210
assert x != price.evaluate()()
示例2: _doctest_grad_log_norm_symbolic
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def _doctest_grad_log_norm_symbolic(self):
"""
>>> import pytest; pytest.skip('Bingham is to slow')
>>> import sympy
>>> trainer = ComplexBinghamTrainer(2)
>>> trainer.grad_log_norm_symbolic[0]
((x0 - x1)*exp(x0) - exp(x0) + exp(x1))/((x0 - x1)*(exp(x0) - exp(x1)))
>>> trainer.grad_log_norm_symbolic[1]
(-(x0 - x1)*exp(x1) + exp(x0) - exp(x1))/((x0 - x1)*(exp(x0) - exp(x1)))
>>> print(sympy.printing.pretty(
... trainer.grad_log_norm_symbolic)) # doctest: +NORMALIZE_WHITESPACE
x0 x0 x1 x1 x0 x1
(x0 - x1)*e - e + e - (x0 - x1)*e + e - e
[-------------------------, ---------------------------]
/ x0 x1\\ / x0 x1\\
(x0 - x1)*\\e - e / (x0 - x1)*\\e - e /
"""
示例3: grad_log_norm_symbolic
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def grad_log_norm_symbolic(self):
import sympy
D = self.dimension
X = self.eigenvalues_symbol
B = [1] * D
for d in range(D):
for dd in range(D):
if d != dd:
B[d] = B[d] * (X[d] - X[dd])
B = [1 / b for b in B]
p_D = sympy.pi ** D
tmp = [b * sympy.exp(x_) for x_, b in zip(X, B)]
tmp = sum(tmp)
symbolic_norm_for_bingham = 2 * p_D * tmp
return [
sympy.simplify(sympy.diff(
sympy.log(symbolic_norm_for_bingham),
x_
))
for x_ in X
]
示例4: _compute_local_sens_gnmax
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def _compute_local_sens_gnmax(logq, sigma, num_classes, order):
"""Implements Algorithm 3 (computes an upper bound on local sensitivity).
(See Proposition 13 for proof of correctness.)
"""
logq0 = _compute_logq0(sigma, order)
logq1 = _compute_logq1(sigma, order, num_classes)
if logq1 <= logq <= logq0:
logq = logq1
beta = _compute_rdp_gnmax(sigma, logq, order)
beta_bu_q = _compute_rdp_gnmax(
sigma, math.log(_compute_bu_gnmax(math.exp(logq), sigma, num_classes)),
order)
beta_bl_q = _compute_rdp_gnmax(
sigma, math.log(_compute_bl_gnmax(math.exp(logq), sigma, num_classes)),
order)
return max(beta_bu_q - beta, beta - beta_bl_q)
示例5: check_conditions
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def check_conditions(sigma, m, order):
"""Checks conditions C5 and C6 (Section B.4.2 in Appendix)."""
q = sp.symbols("q", positive=True, real=True)
beta = _construct_symbolic_beta(q, sigma, order)
q0 = math.exp(compute_logq0_gnmax(sigma, order))
cond5 = _is_non_decreasing(beta, q, (0, q0))
if cond5:
bl_q0 = _compute_bl_gnmax(q0, sigma, m)
bu = _construct_symbolic_bu(q, sigma, m)
delta_beta = beta.subs(q, bu) - beta
cond6 = _is_non_decreasing(delta_beta, q, (0, bl_q0))
else:
cond6 = False # Skip the check, since Condition 5 is false already.
return (cond5, cond6)
示例6: findomega
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def findomega(stab_fh):
assert np.array_equal(np.shape(stab_fh), [2, 2]), 'Not 2x2 matrix...'
omega = sympy.Symbol('omega')
func = (sympy.exp(-1j * omega) - stab_fh[0, 0]) * (sympy.exp(-1j * omega) - stab_fh[1, 1]) - \
stab_fh[0, 1] * stab_fh[1, 0]
solsym = sympy.solve(func, omega)
sol0 = complex(solsym[0])
sol1 = complex(solsym[1])
if sol0.real >= 0:
sol = sol0
elif sol1.real >= 0:
sol = sol1
else:
print("Two roots with real part of same sign...")
sol = sol0
return sol
示例7: test_integrate
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_integrate():
moments = quadpy.tools.integrate(lambda x: [x ** k for k in range(5)], -1, +1)
assert (moments == [2, 0, sympy.S(2) / 3, 0, sympy.S(2) / 5]).all()
moments = quadpy.tools.integrate(
lambda x: orthopy.line_segment.tree_legendre(x, 4, "monic", symbolic=True),
-1,
+1,
)
assert (moments == [2, 0, 0, 0, 0]).all()
# Example from Gautschi's "How to and how not to" article
moments = quadpy.tools.integrate(
lambda x: [x ** k * sympy.exp(-(x ** 3) / 3) for k in range(5)], 0, sympy.oo
)
S = numpy.vectorize(sympy.S)
gamma = numpy.vectorize(sympy.gamma)
n = numpy.arange(5)
reference = 3 ** (S(n - 2) / 3) * gamma(S(n + 1) / 3)
assert numpy.all([sympy.simplify(m - r) == 0 for m, r in zip(moments, reference)])
示例8: test_get_odesys_1
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_get_odesys_1():
k = .2
a = Substance('A')
b = Substance('B')
r = Reaction({'A': 1}, {'B': 1}, param=k)
rsys = ReactionSystem([r], [a, b])
assert sorted(rsys.substances.keys()) == ['A', 'B']
odesys = get_odesys(rsys, include_params=True)[0]
c0 = {
'A': 1.0,
'B': 3.0,
}
t = np.linspace(0.0, 10.0)
xout, yout, info = odesys.integrate(t, c0)
yref = np.zeros((t.size, 2))
yref[:, 0] = np.exp(-k*t)
yref[:, 1] = 4 - np.exp(-k*t)
assert np.allclose(yout, yref)
示例9: test_get_odesys__rate_exprs_cb
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_get_odesys__rate_exprs_cb():
k = .2
a = Substance('A')
b = Substance('B')
r = Reaction({'A': 1}, {'B': 1}, param=k)
rsys = ReactionSystem([r], [a, b])
assert sorted(rsys.substances.keys()) == ['A', 'B']
odesys, extra = get_odesys(rsys)
c0 = {'A': 1.0, 'B': 3.0}
t = np.linspace(0.0, 10.0)
res = odesys.integrate(t, c0)
yref = np.zeros((t.size, 2))
yref[:, 0] = np.exp(-k*t)
yref[:, 1] = 4 - np.exp(-k*t)
assert np.allclose(res.yout, yref)
rate = extra['rate_exprs_cb'](res.xout, res.yout, res.params)
assert np.allclose(rate[:, 0], k*yref[:, 0])
示例10: test_get_odesys__ScaledSys
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_get_odesys__ScaledSys():
from pyodesys.symbolic import ScaledSys
k = .2
a = Substance('A')
b = Substance('B')
r = Reaction({'A': 1}, {'B': 1}, param=k)
rsys = ReactionSystem([r], [a, b])
assert sorted(rsys.substances.keys()) == ['A', 'B']
odesys = get_odesys(rsys, include_params=True, SymbolicSys=ScaledSys)[0]
c0 = {
'A': 1.0,
'B': 3.0,
}
t = np.linspace(0.0, 10.0)
xout, yout, info = odesys.integrate(t, c0)
yref = np.zeros((t.size, 2))
yref[:, 0] = np.exp(-k*t)
yref[:, 1] = 4 - np.exp(-k*t)
assert np.allclose(yout, yref)
示例11: test_create_odesys__validate__catalyst
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_create_odesys__validate__catalyst():
rsys1 = ReactionSystem.from_string("""
H2O2 + Pt -> 2 OH + Pt; 'k_decomp'
""")
ic1 = defaultdict(lambda: 0*u.molar, {'H2O2': 3.0*u.molar, 'Pt': 0.5*u.molar})
t1 = linspace(0*u.s, .3*u.s, 7)
p1 = dict(k_decomp=42/u.second/u.molar)
odesys1, odesys_extra = create_odesys(rsys1)
validation = odesys_extra['validate'](dict(ic1, **p1))
assert not validation['not_seen']
dedim_ctx = _mk_dedim(SI_base_registry)
(t, c, _p), dedim_extra = dedim_ctx['dedim_tcp'](t1, [ic1[k] for k in odesys1.names], p1)
result1 = odesys1.integrate(t, c, _p)
tout = result1.xout * dedim_extra['unit_time']
cout = result1.yout * dedim_extra['unit_conc']
yref1 = ic1['H2O2']*np.exp(-tout*ic1['Pt']*p1['k_decomp'])
assert allclose(yref1, cout[:, odesys1.names.index('H2O2')], rtol=1e-6)
示例12: test_gaussian
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_gaussian():
"""
Make sure that symfit.distributions.Gaussians produces the expected
sympy expression.
"""
x0 = Parameter()
sig = Parameter(positive=True)
x = Variable()
new = sympy.exp(-(x - x0)**2/(2*sig**2))/sympy.sqrt((2*sympy.pi*sig**2))
assert isinstance(new, sympy.Expr)
g = Gaussian(x, x0, sig)
assert issubclass(g.__class__, sympy.Expr)
assert new == g
# A pdf should always integrate to 1 on its domain
assert sympy.integrate(g, (x, -sympy.oo, sympy.oo)) == 1
示例13: test_exp
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def test_exp():
"""
Make sure that symfit.distributions.Exp produces the expected
sympy expression.
"""
l = Parameter(positive=True)
x = Variable()
new = l * sympy.exp(- l * x)
assert isinstance(new, sympy.Expr)
e = Exp(x, l)
assert issubclass(e.__class__, sympy.Expr)
assert new == e
# A pdf should always integrate to 1 on its domain
assert sympy.integrate(e, (x, 0, sympy.oo)) == 1
示例14: BivariateGaussian
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def BivariateGaussian(x, y, mu_x, mu_y, sig_x, sig_y, rho):
"""
`Bivariate Gaussian pdf
<http://mathworld.wolfram.com/BivariateNormalDistribution.html>`_.
:param x: :class:`symfit.core.argument.Variable`
:param y: :class:`symfit.core.argument.Variable`
:param mu_x: :class:`symfit.core.argument.Parameter` for the mean of `x`
:param mu_y: :class:`symfit.core.argument.Parameter` for the mean of `y`
:param sig_x: :class:`symfit.core.argument.Parameter` for the standard
deviation of `x`
:param sig_y: :class:`symfit.core.argument.Parameter` for the standard
deviation of `y`
:param rho: :class:`symfit.core.argument.Parameter` for the correlation
between `x` and `y`.
:return: sympy expression for a Bivariate Gaussian pdf.
"""
exponent = - 1 / (2 * (1 - rho**2))
exponent *= (x - mu_x)**2 / sig_x**2 + (y - mu_y)**2 / sig_y**2 \
- 2 * rho * (x - mu_x) * (y - mu_y) / (sig_x * sig_y)
return sympy.exp(exponent) / (2 * sympy.pi * sig_x * sig_y * sympy.sqrt(1 - rho**2))
示例15: Exp
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import exp [as 別名]
def Exp(x, l):
"""
.. math::
f(x) = l e^{- l x}
Exponential Distribution pdf.
:param x: free variable.
:param l: rate parameter.
:return: sympy.Expr for an Exponential Distribution pdf.
"""
return l * sympy.exp(- l * x)
# def Beta():
# sympy.stats.Beta()