本文整理匯總了Python中sympy.abc.a方法的典型用法代碼示例。如果您正苦於以下問題:Python abc.a方法的具體用法?Python abc.a怎麽用?Python abc.a使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy.abc
的用法示例。
在下文中一共展示了abc.a方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: wigner_d_function
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def wigner_d_function(l, m, n, beta,
field='real', normalization='quantum', order='centered', condon_shortley='cs'):
"""
Evaluate a single Wigner-d function d^l_mn(beta)
NOTE: for now, we implement this by computing the entire degree-l Wigner-d matrix and then selecting
the (m,n) element, so this function is not fast.
:param l: the degree of the Wigner-d function. l >= 0
:param m: the order of the Wigner-d function. -l <= m <= l
:param n: the order of the Wigner-d function. -l <= n <= l
:param beta: the argument. 0 <= beta <= pi
:param field: 'real' or 'complex'
:param normalization: 'quantum', 'seismology', 'geodesy' or 'nfft'
:param order: 'centered' or 'block'
:param condon_shortley: 'cs' or 'nocs'
:return: d^l_mn(beta) in the chosen basis
"""
return wigner_d_matrix(l, beta, field, normalization, order, condon_shortley)[l + m, l + n]
示例2: wigner_D_function
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def wigner_D_function(l, m, n, alpha, beta, gamma,
field='real', normalization='quantum', order='centered', condon_shortley='cs'):
"""
Evaluate a single Wigner-d function d^l_mn(beta)
NOTE: for now, we implement this by computing the entire degree-l Wigner-D matrix and then selecting
the (m,n) element, so this function is not fast.
:param l: the degree of the Wigner-d function. l >= 0
:param m: the order of the Wigner-d function. -l <= m <= l
:param n: the order of the Wigner-d function. -l <= n <= l
:param alpha: the argument. 0 <= alpha <= 2 pi
:param beta: the argument. 0 <= beta <= pi
:param gamma: the argument. 0 <= gamma <= 2 pi
:param field: 'real' or 'complex'
:param normalization: 'quantum', 'seismology', 'geodesy' or 'nfft'
:param order: 'centered' or 'block'
:param condon_shortley: 'cs' or 'nocs'
:return: d^l_mn(beta) in the chosen basis
"""
return wigner_D_matrix(l, alpha, beta, gamma, field, normalization, order, condon_shortley)[l + m, l + n]
示例3: wigner_D_norm
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def wigner_D_norm(l, normalized_haar=True):
"""
Compute the squared norm of the Wigner-D functions.
The squared norm of a function on the SO(3) is defined as
|f|^2 = int_SO(3) |f(g)|^2 dg
where dg is a Haar measure.
:param l: for some normalization conventions, the norm of a Wigner-D function D^l_mn depends on the degree l
:param normalized_haar: whether to use the Haar measure da db sinb dc or the normalized Haar measure
da db sinb dc / 8pi^2
:return: the squared norm of the spherical harmonic with respect to given measure
:param l:
:param normalization:
:return:
"""
if normalized_haar:
return 1. / (2 * l + 1)
else:
return (8 * np.pi ** 2) / (2 * l + 1)
示例4: wigner_d_naive_v2
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def wigner_d_naive_v2(l, m, n, beta):
"""
Wigner d functions as defined in the SOFT 2.0 documentation.
When approx_lim is set to a high value, this function appears to give
identical results to Johann Goetz' wignerd() function.
However, integration fails: does not satisfy orthogonality relations everywhere...
"""
from scipy.special import jacobi
if n >= m:
xi = 1
else:
xi = (-1)**(n - m)
mu = np.abs(m - n)
nu = np.abs(n + m)
s = l - (mu + nu) * 0.5
sq = np.sqrt((np.math.factorial(s) * np.math.factorial(s + mu + nu))
/ (np.math.factorial(s + mu) * np.math.factorial(s + nu)))
sinb = np.sin(beta * 0.5) ** mu
cosb = np.cos(beta * 0.5) ** nu
P = jacobi(s, mu, nu)(np.cos(beta))
return xi * sq * sinb * cosb * P
示例5: test_get_most_simple_representation
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_get_most_simple_representation(self):
cpl = get_most_simple_representation(qc_sympify('1 + 1j'))
self.assertIsInstance(cpl, str)
self.assertTrue(bool(sympy.Eq(sympy.sympify(cpl), 1 + 1j)))
integer = get_most_simple_representation(qc_sympify('3'))
self.assertIsInstance(integer, int)
self.assertEqual(integer, 3)
flt = get_most_simple_representation(qc_sympify('3.1'))
self.assertIsInstance(flt, float)
self.assertEqual(flt, 3.1)
st = get_most_simple_representation(qc_sympify('a + b'))
self.assertIsInstance(st, str)
self.assertEqual(st, 'a + b')
示例6: test_symbolic_shape
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_symbolic_shape(self):
symbolic = Broadcast(a, (b,))
self.assertIs(symbolic.func, Broadcast)
self.assertEqual(symbolic.args, (a, (b,)))
subs_b = symbolic.subs({b: 6})
self.assertIs(subs_b.func, Broadcast)
self.assertEqual(subs_b.args, (a, (6,)))
subs_a = symbolic.subs({a: 3})
self.assertIs(subs_a.func, Broadcast)
self.assertEqual(subs_a.args, (3, (b,)))
subs_both_scalar = symbolic.subs({a: 3, b: 6})
self.assertEqual(subs_both_scalar, sympy.Array([3, 3, 3, 3, 3, 3]))
subs_both_array = symbolic.subs({a: (1, 2, 3, 4, 5, 6), b: 6})
self.assertEqual(subs_both_array, sympy.Array([1, 2, 3, 4, 5, 6]))
with self.assertRaises(ValueError):
symbolic.subs({a: (1, 2, 3, 4, 5, 6), b: 7})
示例7: test_scalar_broad_cast
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_scalar_broad_cast(self):
symbolic = Broadcast(a, (6,))
self.assertIs(symbolic.func, Broadcast)
self.assertEqual(symbolic.args, (a, (6,)))
subs_symbol = symbolic.subs({a: b})
self.assertIs(subs_symbol.func, Broadcast)
self.assertEqual(subs_symbol.args, (b, (6,)))
subs_scalar = symbolic.subs({a: 3.4})
self.assertEqual(subs_scalar, sympy.Array([3.4, 3.4, 3.4, 3.4, 3.4, 3.4]))
subs_symbol_vector = symbolic.subs({a: (b, 1, 2, 3, 4, 5)})
self.assertEqual(subs_symbol_vector, sympy.Array([b, 1, 2, 3, 4, 5]))
subs_numeric_vector = symbolic.subs({a: (0, 1, 2, 3, 4, 5)})
self.assertEqual(subs_numeric_vector, sympy.Array([0, 1, 2, 3, 4, 5]))
with self.assertRaises(ValueError):
symbolic.subs({a: (b, 4, 5)})
with self.assertRaises(ValueError):
symbolic.subs({a: (8, 5, 3, 5, 5, 4, 4, 5)})
示例8: test_numeric_evaluation
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_numeric_evaluation(self):
symbolic = Broadcast(a, (b,))
arguments = {'a': (1, 2., 3), 'b': 3}
expected = np.asarray([1, 2., 3])
result, _ = evaluate_lambdified(symbolic, ['a', 'b'], arguments, None)
np.testing.assert_array_equal(expected, result)
with self.assertRaises(ValueError):
arguments = {'a': (1, 2., 3), 'b': 4}
evaluate_lambdified(symbolic, ['a', 'b'], arguments, None)
arguments = {'a': 1, 'b': 3}
expected = np.asarray([1, 1, 1])
result, _ = evaluate_lambdified(symbolic, ['a', 'b'], arguments, None)
np.testing.assert_array_equal(expected, result)
示例9: test_RandomDomain
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert upretty(where(X > 0)) == u("Domain: x₁ > 0")
D = Die('d1', 6)
assert upretty(where(D > 4)) == u('Domain: d₁ = 5 ∨ d₁ = 6')
A = Exponential('a', 1)
B = Exponential('b', 1)
assert upretty(pspace(Tuple(A, B)).domain) == u('Domain: a ≥ 0 ∧ b ≥ 0')
示例10: theano_simplify
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def theano_simplify(fgraph):
""" Simplify a Theano Computation """
mode = theano.compile.get_default_mode().excluding("fusion")
fgraph = fgraph.clone()
mode.optimizer.optimize(fgraph)
return fgraph
示例11: theq
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def theq(a, b):
""" theano equality """
astr = theano.printing.debugprint(a, file='str')
bstr = theano.printing.debugprint(b, file='str')
if not astr == bstr:
print()
print(astr)
print(bstr)
return astr == bstr
示例12: wigner_d_naive
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def wigner_d_naive(l, m, n, beta):
"""
Numerically naive implementation of the Wigner-d function.
This is useful for checking the correctness of other implementations.
:param l: the degree of the Wigner-d function. l >= 0
:param m: the order of the Wigner-d function. -l <= m <= l
:param n: the order of the Wigner-d function. -l <= n <= l
:param beta: the argument. 0 <= beta <= pi
:return: d^l_mn(beta) in the TODO: what basis? complex, quantum(?), centered, cs(?)
"""
from scipy.special import eval_jacobi
try:
from scipy.misc import factorial
except:
from scipy.special import factorial
from sympy.functions.special.polynomials import jacobi, jacobi_normalized
from sympy.abc import j, a, b, x
from sympy import N
#jfun = jacobi_normalized(j, a, b, x)
jfun = jacobi(j, a, b, x)
# eval_jacobi = lambda q, r, p, o: float(jfun.eval(int(q), int(r), int(p), float(o)))
# eval_jacobi = lambda q, r, p, o: float(N(jfun, int(q), int(r), int(p), float(o)))
eval_jacobi = lambda q, r, p, o: float(jfun.subs({j:int(q), a:int(r), b:int(p), x:float(o)}))
mu = np.abs(m - n)
nu = np.abs(m + n)
s = l - (mu + nu) / 2
xi = 1 if n >= m else (-1) ** (n - m)
# print(s, mu, nu, np.cos(beta), type(s), type(mu), type(nu), type(np.cos(beta)))
jac = eval_jacobi(s, mu, nu, np.cos(beta))
z = np.sqrt((factorial(s) * factorial(s + mu + nu)) / (factorial(s + mu) * factorial(s + nu)))
# print(l, m, n, beta, np.isfinite(mu), np.isfinite(nu), np.isfinite(s), np.isfinite(xi), np.isfinite(jac), np.isfinite(z))
assert np.isfinite(mu) and np.isfinite(nu) and np.isfinite(s) and np.isfinite(xi) and np.isfinite(jac) and np.isfinite(z)
assert np.isfinite(xi * z * np.sin(beta / 2) ** mu * np.cos(beta / 2) ** nu * jac)
return xi * z * np.sin(beta / 2) ** mu * np.cos(beta / 2) ** nu * jac
示例13: test_get_free_symbols
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_get_free_symbols(self):
expr = a * b / 5
self.assert_symbol_sets_equal([a, b], get_free_symbols(expr))
示例14: test_get_free_symbols_indexed
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_get_free_symbols_indexed(self):
expr = a_[i] * IndexedBase(a*b)[j]
self.assert_symbol_sets_equal({a, b, i, j}, set(get_free_symbols(expr)))
示例15: test_get_variables
# 需要導入模塊: from sympy import abc [as 別名]
# 或者: from sympy.abc import a [as 別名]
def test_get_variables(self):
expr = a * b / 5
self.assertEqual({'a', 'b'}, set(get_variables(expr)))