本文整理匯總了Python中sympy.Piecewise方法的典型用法代碼示例。如果您正苦於以下問題:Python sympy.Piecewise方法的具體用法?Python sympy.Piecewise怎麽用?Python sympy.Piecewise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sympy
的用法示例。
在下文中一共展示了sympy.Piecewise方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _integrate_exact
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _integrate_exact(f, c2):
xi = sympy.DeferredVector("xi")
pxi = (
c2[0] * 0.25 * (1.0 + xi[0]) * (1.0 + xi[1])
+ c2[1] * 0.25 * (1.0 - xi[0]) * (1.0 + xi[1])
+ c2[2] * 0.25 * (1.0 - xi[0]) * (1.0 - xi[1])
+ c2[3] * 0.25 * (1.0 + xi[0]) * (1.0 - xi[1])
)
pxi = [sympy.expand(pxi[0]), sympy.expand(pxi[1])]
# determinant of the transformation matrix
det_J = +sympy.diff(pxi[0], xi[0]) * sympy.diff(pxi[1], xi[1]) - sympy.diff(
pxi[1], xi[0]
) * sympy.diff(pxi[0], xi[1])
# we cannot use abs(), see <https://github.com/sympy/sympy/issues/4212>.
abs_det_J = sympy.Piecewise((det_J, det_J >= 0), (-det_J, det_J < 0))
g_xi = f(pxi)
exact = sympy.integrate(
sympy.integrate(abs_det_J * g_xi, (xi[1], -1, 1)), (xi[0], -1, 1)
)
return float(exact)
示例2: test_PiecewisePoly__sympy
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def test_PiecewisePoly__sympy():
import sympy as sp
Poly = mk_Poly('T')
p1 = Poly([0, 1, 0.1])
p2 = Poly([0, 3, -.1])
TPiecewisePoly = mk_PiecewisePoly('temperature')
tpwp = TPiecewisePoly([2, 2, 0, 10, 2, 10, 20, 0, 1, 0.1, 0, 3, -.1])
x = sp.Symbol('x')
res = tpwp.eval_poly({'temperature': x}, backend=sp)
assert isinstance(res, sp.Piecewise)
assert res.args[0][0] == 1 + 0.1*x
assert res.args[0][1] == sp.And(0 <= x, x <= 10)
assert res.args[1][0] == 3 - 0.1*x
assert res.args[1][1] == sp.And(10 <= x, x <= 20)
with pytest.raises(ValueError):
tpwp.from_polynomials([(0, 10), (10, 20)], [p1, p2])
示例3: duration
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def duration(self) -> ExpressionScalar:
step_size = self._loop_range.step.sympified_expression
loop_index = sympy.symbols(self._loop_index)
sum_index = sympy.symbols(self._loop_index)
# replace loop_index with sum_index dependable expression
body_duration = self.body.duration.sympified_expression.subs({loop_index: self._loop_range.start.sympified_expression + sum_index*step_size})
# number of sum contributions
step_count = sympy.ceiling((self._loop_range.stop.sympified_expression-self._loop_range.start.sympified_expression) / step_size)
sum_start = 0
sum_stop = sum_start + (sympy.functions.Max(step_count, 1) - 1)
# expression used if step_count >= 0
finite_duration_expression = sympy.Sum(body_duration, (sum_index, sum_start, sum_stop))
duration_expression = sympy.Piecewise((0, step_count <= 0),
(finite_duration_expression, True))
return ExpressionScalar(duration_expression)
示例4: _print_Piecewise
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _print_Piecewise(self, expr, **kwargs):
import numpy as np
e, cond = expr.args[0].args
if len(expr.args) == 1:
return tt.switch(self._print(cond, **kwargs),
self._print(e, **kwargs),
np.nan)
return tt.switch(self._print(cond, **kwargs),
self._print(e, **kwargs),
self._print(sympy.Piecewise(*expr.args[1:]), **kwargs))
示例5: _needs_mul_brackets
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _needs_mul_brackets(self, expr, last=False):
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
"""
from sympy import Integral, Piecewise, Product, Sum
return expr.is_Add or (not last and
any([expr.has(x) for x in (Integral, Piecewise, Product, Sum)]))
示例6: test_logic
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def test_logic():
x = true
y = false
x1 = sympy.true
y1 = sympy.false
assert And(x, y) == And(x1, y1)
assert And(x1, y) == And(x1, y1)
assert And(x, y)._sympy_() == sympy.And(x1, y1)
assert sympify(sympy.And(x1, y1)) == And(x, y)
assert Or(x, y) == Or(x1, y1)
assert Or(x1, y) == Or(x1, y1)
assert Or(x, y)._sympy_() == sympy.Or(x1, y1)
assert sympify(sympy.Or(x1, y1)) == Or(x, y)
assert Not(x) == Not(x1)
assert Not(x1) == Not(x1)
assert Not(x)._sympy_() == sympy.Not(x1)
assert sympify(sympy.Not(x1)) == Not(x)
assert Xor(x, y) == Xor(x1, y1)
assert Xor(x1, y) == Xor(x1, y1)
assert Xor(x, y)._sympy_() == sympy.Xor(x1, y1)
assert sympify(sympy.Xor(x1, y1)) == Xor(x, y)
x = Symbol("x")
x1 = sympy.Symbol("x")
assert Piecewise((x, x < 1), (0, True)) == Piecewise((x1, x1 < 1), (0, True))
assert Piecewise((x, x1 < 1), (0, True)) == Piecewise((x1, x1 < 1), (0, True))
assert Piecewise((x, x < 1), (0, True))._sympy_() == sympy.Piecewise((x1, x1 < 1), (0, True))
assert sympify(sympy.Piecewise((x1, x1 < 1), (0, True))) == Piecewise((x, x < 1), (0, True))
assert Contains(x, Interval(1, 1)) == Contains(x1, Interval(1, 1))
assert Contains(x, Interval(1, 1))._sympy_() == sympy.Contains(x1, Interval(1, 1))
assert sympify(sympy.Contains(x1, Interval(1, 1))) == Contains(x, Interval(1, 1))
示例7: f
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def f(self, yvec, params):
import sympy as sp
f_penalty = [sp.Piecewise((yi**2, yi < 0), (0, True)) for yi in yvec]
return super(_NumSysLinNegPenalty, self).f(yvec, params) + f_penalty
示例8: test_PiecewiseTPolyMassAction__sympy
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def test_PiecewiseTPolyMassAction__sympy():
import sympy as sp
tp1 = TPoly([10, 0.1])
tp2 = ShiftedTPoly([273.15, 37.315, -0.1])
pwp = MassAction(TPiecewise([0, tp1, 273.15, tp2, 373.15]))
T = sp.Symbol('T')
r = Reaction({'A': 2, 'B': 1}, {'C': 1}, inact_reac={'B': 1})
res1 = pwp({'A': 11, 'B': 13, 'temperature': T}, backend=sp, reaction=r)
ref1 = 11**2 * 13 * sp.Piecewise(
(10+0.1*T, sp.And(0 <= T, T <= 273.15)),
(37.315 - 0.1*(T-273.15), sp.And(273.15 <= T, T <= 373.15)),
(sp.Symbol('NAN'), True)
)
assert res1 == ref1
示例9: test_create_Piecewise_Poly__sympy
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def test_create_Piecewise_Poly__sympy():
import sympy as sp
Poly = create_Poly('Tmpr')
p1 = Poly([1, 0.1])
p2 = Poly([3, -.1])
TPw = create_Piecewise('Tmpr')
pw = TPw([0, p1, 10, p2, 20])
x = sp.Symbol('x')
res = pw({'Tmpr': x}, backend=sp)
assert isinstance(res, sp.Piecewise)
assert res.args[0][0] == 1 + 0.1*x
assert res.args[0][1] == sp.And(0 <= x, x <= 10)
assert res.args[1][0] == 3 - 0.1*x
assert res.args[1][1] == sp.And(10 <= x, x <= 20)
示例10: _print_hyper
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _print_hyper(self, e):
# FIXME refactor Matrix, Piecewise, and this into a tabular environment
ap = [self._print(a) for a in e.ap]
bq = [self._print(b) for b in e.bq]
P = self._print(e.argument)
P.baseline = P.height()//2
# Drawing result - first create the ap, bq vectors
D = None
for v in [ap, bq]:
D_row = self._hprint_vec(v)
if D is None:
D = D_row # first row in a picture
else:
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
# make sure that the argument `z' is centred vertically
D.baseline = D.height()//2
# insert horizontal separator
P = prettyForm(*P.left(' '))
D = prettyForm(*D.right(' '))
# insert separating `|`
D = self._hprint_vseparator(D, P)
# add parens
D = prettyForm(*D.parens('(', ')'))
# create the F symbol
above = D.height()//2 - 1
below = D.height() - above - 1
sz, t, b, add, img = annotated('F')
F = prettyForm('\n' * (above - t) + img + '\n' * (below - b),
baseline=above + sz)
add = (sz + 1)//2
F = prettyForm(*F.left(self._print(len(e.ap))))
F = prettyForm(*F.right(self._print(len(e.bq))))
F.baseline = above + add
D = prettyForm(*F.right(' ', D))
return D
示例11: _print_Mul
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _print_Mul(self, product):
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
if self.order not in ('old', 'none'):
args = product.as_ordered_factors()
else:
args = product.args
# Gather terms for numerator/denominator
for item in args:
if item.is_commutative and item.is_Pow and item.exp.is_Rational and item.exp.is_negative:
b.append(C.Pow(item.base, -item.exp))
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append( C.Rational(item.p) )
if item.q != 1:
b.append( C.Rational(item.q) )
else:
a.append(item)
from sympy import Integral, Piecewise, Product, Sum
# Convert to pretty forms. Add parens to Add instances if there
# is more than one term in the numer/denom
for i in xrange(0, len(a)):
if (a[i].is_Add and len(a) > 1) or (i != len(a) - 1 and
isinstance(a[i], (Integral, Piecewise, Product, Sum))):
a[i] = prettyForm(*self._print(a[i]).parens())
else:
a[i] = self._print(a[i])
for i in xrange(0, len(b)):
if (b[i].is_Add and len(b) > 1) or (i != len(b) - 1 and
isinstance(b[i], (Integral, Piecewise, Product, Sum))):
b[i] = prettyForm(*self._print(b[i]).parens())
else:
b[i] = self._print(b[i])
# Construct a pretty form
if len(b) == 0:
return prettyForm.__mul__(*a)
else:
if len(a) == 0:
a.append( self._print(S.One) )
return prettyForm.__mul__(*a)/prettyForm.__mul__(*b)
# A helper function for _print_Pow to print x**(1/n)
示例12: _integrate_exact
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _integrate_exact(k, pyra):
def f(x):
return x[0] ** int(k[0]) * x[1] ** int(k[1]) * x[2] ** int(k[2])
# map the reference hexahedron [-1,1]^3 to the p3
xi = sympy.DeferredVector("xi")
pxi = (
+pyra[0] * (1 - xi[0]) * (1 - xi[1]) * (1 - xi[2]) / 8
+ pyra[1] * (1 + xi[0]) * (1 - xi[1]) * (1 - xi[2]) / 8
+ pyra[2] * (1 + xi[0]) * (1 + xi[1]) * (1 - xi[2]) / 8
+ pyra[3] * (1 - xi[0]) * (1 + xi[1]) * (1 - xi[2]) / 8
+ pyra[4] * (1 + xi[2]) / 2
)
pxi = [sympy.expand(pxi[0]), sympy.expand(pxi[1]), sympy.expand(pxi[2])]
# determinant of the transformation matrix
J = sympy.Matrix(
[
[
sympy.diff(pxi[0], xi[0]),
sympy.diff(pxi[0], xi[1]),
sympy.diff(pxi[0], xi[2]),
],
[
sympy.diff(pxi[1], xi[0]),
sympy.diff(pxi[1], xi[1]),
sympy.diff(pxi[1], xi[2]),
],
[
sympy.diff(pxi[2], xi[0]),
sympy.diff(pxi[2], xi[1]),
sympy.diff(pxi[2], xi[2]),
],
]
)
det_J = sympy.det(J)
# we cannot use abs(), see <https://github.com/sympy/sympy/issues/4212>.
# abs_det_J = sympy.Piecewise((det_J, det_J >= 0), (-det_J, det_J < 0))
# This is quite the leap of faith, but sympy will cowardly bail out
# otherwise.
abs_det_J = det_J
exact = sympy.integrate(
sympy.integrate(
sympy.integrate(abs_det_J * f(pxi), (xi[2], -1, 1)), (xi[1], -1, +1)
),
(xi[0], -1, +1),
)
return float(exact)
示例13: _integrate_exact
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _integrate_exact(f, hexa):
xi = sympy.DeferredVector("xi")
pxi = (
+hexa[0] * 0.125 * (1.0 - xi[0]) * (1.0 - xi[1]) * (1.0 - xi[2])
+ hexa[1] * 0.125 * (1.0 + xi[0]) * (1.0 - xi[1]) * (1.0 - xi[2])
+ hexa[2] * 0.125 * (1.0 + xi[0]) * (1.0 + xi[1]) * (1.0 - xi[2])
+ hexa[3] * 0.125 * (1.0 - xi[0]) * (1.0 + xi[1]) * (1.0 - xi[2])
+ hexa[4] * 0.125 * (1.0 - xi[0]) * (1.0 - xi[1]) * (1.0 + xi[2])
+ hexa[5] * 0.125 * (1.0 + xi[0]) * (1.0 - xi[1]) * (1.0 + xi[2])
+ hexa[6] * 0.125 * (1.0 + xi[0]) * (1.0 + xi[1]) * (1.0 + xi[2])
+ hexa[7] * 0.125 * (1.0 - xi[0]) * (1.0 + xi[1]) * (1.0 + xi[2])
)
pxi = [sympy.expand(pxi[0]), sympy.expand(pxi[1]), sympy.expand(pxi[2])]
# determinant of the transformation matrix
J = sympy.Matrix(
[
[
sympy.diff(pxi[0], xi[0]),
sympy.diff(pxi[0], xi[1]),
sympy.diff(pxi[0], xi[2]),
],
[
sympy.diff(pxi[1], xi[0]),
sympy.diff(pxi[1], xi[1]),
sympy.diff(pxi[1], xi[2]),
],
[
sympy.diff(pxi[2], xi[0]),
sympy.diff(pxi[2], xi[1]),
sympy.diff(pxi[2], xi[2]),
],
]
)
det_J = sympy.det(J)
# we cannot use abs(), see <https://github.com/sympy/sympy/issues/4212>.
abs_det_J = sympy.Piecewise((det_J, det_J >= 0), (-det_J, det_J < 0))
g_xi = f(pxi)
exact = sympy.integrate(
sympy.integrate(
sympy.integrate(abs_det_J * g_xi, (xi[2], -1, 1)), (xi[1], -1, 1)
),
(xi[0], -1, 1),
)
return float(exact)
示例14: _add_diff_to_cache
# 需要導入模塊: import sympy [as 別名]
# 或者: from sympy import Piecewise [as 別名]
def _add_diff_to_cache(self, diff):
'''
Symbolically differentiates the RBF and then converts the expression to a
function which can be evaluated numerically.
'''
logger.debug('Creating a numerical function for the RBF %s with '
'the derivative %s ...' % (self, str(diff)))
dim = len(diff)
c_sym = sympy.symbols('c:%s' % dim)
x_sym = sympy.symbols('x:%s' % dim)
r_sym = sympy.sqrt(sum((xi-ci)**2 for xi, ci in zip(x_sym, c_sym)))
# substitute 'r' in the RBF expression with the cartesian spatial variables
# and differentiate the RBF with respect to them
expr = self.expr.subs(_R, r_sym)
for xi, order in zip(x_sym, diff):
if order == 0:
continue
expr = expr.diff(*(xi,)*order)
# if `tol` is given, form a separate expression for the RBF near its center
if self.tol is not None:
if diff in self.limits:
# use a user-specified limit if available
lim = self.limits[diff]
else:
logger.debug('Symbolically evaluating the RBF at its center ...')
# evaluate the limit of the RBF at (x0=tol+c0, x1=c1, x2=c2, ...) as
# tol goes to zero.
lim = expr.subs(zip(x_sym[1:], c_sym[1:]))
lim = lim.simplify()
lim = lim.limit(x_sym[0], c_sym[0])
logger.debug('Value of the RBF at its center: %s' % lim)
# create a piecewise symbolic function which is `lim` when `r_sym < tol`
# and `expr` otherwise
expr = sympy.Piecewise((lim, r_sym < self.tol), (expr, True))
if _SYMBOLIC_TO_NUMERIC_METHOD == 'ufuncify':
func = ufuncify(x_sym + c_sym + (_EPS,), expr, backend='numpy')
elif _SYMBOLIC_TO_NUMERIC_METHOD == 'lambdify':
func = lambdify(x_sym + c_sym + (_EPS,), expr, modules=['numpy'])
else:
raise ValueError()
self._cache[diff] = func
logger.debug('The numeric function has been created and cached')