本文整理匯總了Python中sugartensor.sg_info方法的典型用法代碼示例。如果您正苦於以下問題:Python sugartensor.sg_info方法的具體用法?Python sugartensor.sg_info怎麽用?Python sugartensor.sg_info使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sugartensor
的用法示例。
在下文中一共展示了sugartensor.sg_info方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def __init__(self, batch_size=32, name='train'):
# load train corpus
sources, targets = self._load_corpus(mode='train')
# to constant tensor
source = tf.convert_to_tensor(sources)
target = tf.convert_to_tensor(targets)
# create queue from constant tensor
source, target = tf.train.slice_input_producer([source, target])
# create batch queue
batch_queue = tf.train.shuffle_batch([source, target], batch_size,
num_threads=32, capacity=batch_size*64,
min_after_dequeue=batch_size*32, name=name)
# split data
self.source, self.target = batch_queue
# calc total batch count
self.num_batch = len(sources) // batch_size
# print info
tf.sg_info('Train data loaded.(total data=%d, total batch=%d)' % (len(sources), self.num_batch))
示例2: run_generator
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def run_generator(num, x1, x2, fig_name='sample.png'):
with tf.Session() as sess:
tf.sg_init(sess)
# restore parameters
tf.sg_restore(sess, tf.train.latest_checkpoint('asset/train/infogan'), category='generator')
# run generator
imgs = sess.run(gen, {target_num: num,
target_cval_1: x1,
target_cval_2: x2})
# plot result
_, ax = plt.subplots(10, 10, sharex=True, sharey=True)
for i in range(10):
for j in range(10):
ax[i][j].imshow(imgs[i * 10 + j], 'gray')
ax[i][j].set_axis_off()
plt.savefig('asset/train/infogan/' + fig_name, dpi=600)
tf.sg_info('Sample image saved to "asset/train/infogan/%s"' % fig_name)
plt.close()
#
# draw sample by categorical division
#
# fake image
示例3: run_generator
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def run_generator(num, x1, x2, fig_name='sample.png'):
with tf.Session() as sess:
tf.sg_init(sess)
# restore parameters
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('asset/train'))
# run generator
imgs = sess.run(gen, {target_num: num,
target_cval_1: x1,
target_cval_2: x2})
# plot result
_, ax = plt.subplots(10, 10, sharex=True, sharey=True)
for i in range(10):
for j in range(10):
ax[i][j].imshow(imgs[i * 10 + j], 'gray')
ax[i][j].set_axis_off()
plt.savefig('asset/train/' + fig_name, dpi=600)
tf.sg_info('Sample image saved to "asset/train/%s"' % fig_name)
plt.close()
#
# draw sample by categorical division
#
# fake image
示例4: __init__
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def __init__(self, batch_size=16, set_name='train'):
# load meta file
label, mfcc_file = [], []
with open(_data_path + 'preprocess/meta/%s.csv' % set_name) as csv_file:
reader = csv.reader(csv_file, delimiter=',')
for row in reader:
# mfcc file
mfcc_file.append(_data_path + 'preprocess/mfcc/' + row[0] + '.npy')
# label info ( convert to string object for variable-length support )
label.append(np.asarray(row[1:], dtype=np.int).tostring())
# to constant tensor
label_t = tf.convert_to_tensor(label)
mfcc_file_t = tf.convert_to_tensor(mfcc_file)
# create queue from constant tensor
label_q, mfcc_file_q \
= tf.train.slice_input_producer([label_t, mfcc_file_t], shuffle=True)
# create label, mfcc queue
label_q, mfcc_q = _load_mfcc(source=[label_q, mfcc_file_q],
dtypes=[tf.sg_intx, tf.sg_floatx],
capacity=256, num_threads=64)
# create batch queue with dynamic pad
batch_queue = tf.train.batch([label_q, mfcc_q], batch_size,
shapes=[(None,), (20, None)],
num_threads=64, capacity=batch_size*32,
dynamic_pad=True)
# split data
self.label, self.mfcc = batch_queue
# batch * time * dim
self.mfcc = self.mfcc.sg_transpose(perm=[0, 2, 1])
# calc total batch count
self.num_batch = len(label) // batch_size
# print info
tf.sg_info('%s set loaded.(total data=%d, total batch=%d)'
% (set_name.upper(), len(label), self.num_batch))
示例5: run_generator
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def run_generator(num, x1, x2, fig_name='sample.png'):
with tf.Session() as sess:
tf.sg_init(sess)
# restore parameters
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('asset/train/ckpt'))
# run generator
imgs = sess.run(gen, {target_num: num,
target_cval_1: x1,
target_cval_2: x2})
# plot result
_, ax = plt.subplots(10, 10, sharex=True, sharey=True)
for i in range(10):
for j in range(10):
ax[i][j].plot(imgs[i * 10 + j, :, 0], color='b', linewidth=0.25)
# Turn off tick labels only
# ax[i][j].set_axis_off()
ax[i][j].set_xticks([])
ax[i][j].set_yticks([])
plt.savefig('asset/train/' + fig_name, dpi=600)
tf.sg_info('Sample image saved to "asset/train/%s"' % fig_name)
plt.close()
#
# draw sample by categorical division
#
# fake image
示例6: run_generator
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def run_generator(num, x1, x2, fig_name='sample.png'):
with tf.Session() as sess:
tf.sg_init(sess)
# restore parameters
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('asset/train/ckpt'))
# run generator
imgs = sess.run(gen, {target_num: num,
target_cval_1: x1,
target_cval_2: x2})
# plot result
_, ax = plt.subplots(10, 10, sharex=True, sharey=True)
for i in range(10):
for j in range(10):
ax[i][j].plot(imgs[i * 10 + j, :, 0])
ax[i][j].plot(imgs[i * 10 + j, :, 1])
ax[i][j].set_axis_off()
plt.savefig('asset/train/' + fig_name, dpi=600)
tf.sg_info('Sample image saved to "asset/train/%s"' % fig_name)
plt.close()
#
# draw sample by categorical division
#
# fake image
示例7: run_generator
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def run_generator(num, x1, x2, fig_name='sample.png'):
with tf.Session() as sess:
tf.sg_init(sess)
# restore parameters
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('asset/train/ckpt'))
# run generator
imgs = sess.run(gen, {target_num: num,
target_cval_1: x1,
target_cval_2: x2})
# plot result
_, ax = plt.subplots(10, 10, sharex=True, sharey=True)
for i in range(10):
for j in range(10):
ax[i][j].imshow(imgs[i * 10 + j], 'gray')
ax[i][j].set_axis_off()
plt.savefig('asset/train/' + fig_name, dpi=600)
tf.sg_info('Sample image saved to "asset/train/%s"' % fig_name)
plt.close()
#
# draw sample by categorical division
#
# fake image
示例8: sg_regularizer_loss
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import sg_info [as 別名]
def sg_regularizer_loss(scale=1.0):
r""" Get regularizer losss
Args:
scale: A scalar. A weight applied to regularizer loss
"""
return scale * tf.reduce_mean(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
# Under construction
# def sg_tsne(tensor, meta_file='metadata.tsv', save_dir='asset/tsne'):
# r""" Manages arguments of `tf.sg_opt`.
#
# Args:
# save_dir: A string. The root path to which checkpoint and log files are saved.
# Default is `asset/train`.
# """
#
# # make directory if not exist
# if not os.path.exists(save_dir):
# os.makedirs(save_dir)
#
# # checkpoint saver
# saver = tf.train.Saver()
#
# # summary writer
# summary_writer = tf.summary.FileWriter(save_dir, graph=tf.get_default_graph())
#
# # embedding visualizer
# config = projector.ProjectorConfig()
# emb = config.embeddings.add()
# emb.tensor_name = tensor.name # tensor
# # emb.metadata_path = os.path.join(save_dir, meta_file) # metadata file
# projector.visualize_embeddings(summary_writer, config)
#
# # create session
# sess = tf.Session()
# # initialize variables
# sg_init(sess)
#
# # save tsne
# saver.save(sess, save_dir + '/model-tsne')
#
# # logging
# tf.sg_info('Tsne saved at %s' % (save_dir + '/model-tsne'))
#
# # close session
# sess.close()