本文整理匯總了Python中sugartensor.reduce_mean方法的典型用法代碼示例。如果您正苦於以下問題:Python sugartensor.reduce_mean方法的具體用法?Python sugartensor.reduce_mean怎麽用?Python sugartensor.reduce_mean使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sugartensor
的用法示例。
在下文中一共展示了sugartensor.reduce_mean方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sg_summary_loss
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import reduce_mean [as 別名]
def sg_summary_loss(tensor, prefix='losses', name=None):
r"""Register `tensor` to summary report as `loss`
Args:
tensor: A `Tensor` to log as loss
prefix: A `string`. A prefix to display in the tensor board web UI.
name: A `string`. A name to display in the tensor board web UI.
Returns:
None
"""
# defaults
prefix = '' if prefix is None else prefix + '/'
# summary name
name = prefix + _pretty_name(tensor) if name is None else prefix + name
# summary statistics
_scalar(name, tf.reduce_mean(tensor))
_histogram(name + '-h', tensor)
示例2: sg_summary_metric
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import reduce_mean [as 別名]
def sg_summary_metric(tensor, prefix='metrics', name=None):
r"""Register `tensor` to summary report as `metric`
Args:
tensor: A `Tensor` to log as metric
prefix: A `string`. A prefix to display in the tensor board web UI.
name: A `string`. A name to display in the tensor board web UI.
Returns:
None
"""
# defaults
prefix = '' if prefix is None else prefix + '/'
# summary name
name = prefix + _pretty_name(tensor) if name is None else prefix + name
# summary statistics
_scalar(name, tf.reduce_mean(tensor))
_histogram(name + '-h', tensor)
示例3: sg_summary_gradient
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import reduce_mean [as 別名]
def sg_summary_gradient(tensor, gradient, prefix=None, name=None):
r"""Register `tensor` to summary report as `gradient`
Args:
tensor: A `Tensor` to log as gradient
gradient: A 0-D `Tensor`. A gradient to log
prefix: A `string`. A prefix to display in the tensor board web UI.
name: A `string`. A name to display in the tensor board web UI.
Returns:
None
"""
# defaults
prefix = '' if prefix is None else prefix + '/'
# summary name
name = prefix + _pretty_name(tensor) if name is None else prefix + name
# summary statistics
# noinspection PyBroadException
_scalar(name + '/grad', tf.reduce_mean(tf.abs(gradient)))
_histogram(name + '/grad-h', tf.abs(gradient))
示例4: sg_summary_activation
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import reduce_mean [as 別名]
def sg_summary_activation(tensor, prefix=None, name=None):
r"""Register `tensor` to summary report as `activation`
Args:
tensor: A `Tensor` to log as activation
prefix: A `string`. A prefix to display in the tensor board web UI.
name: A `string`. A name to display in the tensor board web UI.
Returns:
None
"""
# defaults
prefix = '' if prefix is None else prefix + '/'
# summary name
name = prefix + _pretty_name(tensor) if name is None else prefix + name
# summary statistics
_scalar(name + '/ratio',
tf.reduce_mean(tf.cast(tf.greater(tensor, 0), tf.sg_floatx)))
_histogram(name + '/ratio-h', tensor)
示例5: sg_mean
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import reduce_mean [as 別名]
def sg_mean(tensor, opt):
r"""Computes the mean of elements across axis of a tensor.
See `tf.reduce_mean()` in tensorflow.
Args:
tensor: A `Tensor` (automatically given by chain).
opt:
axis : A tuple/list of integers or an integer. The axis to reduce.
keep_dims: If true, retains reduced dimensions with length 1.
name: If provided, replace current tensor's name.
Returns:
A `Tensor`.
"""
return tf.reduce_mean(tensor, axis=opt.axis, keep_dims=opt.keep_dims, name=opt.name)
示例6: sg_regularizer_loss
# 需要導入模塊: import sugartensor [as 別名]
# 或者: from sugartensor import reduce_mean [as 別名]
def sg_regularizer_loss(scale=1.0):
r""" Get regularizer losss
Args:
scale: A scalar. A weight applied to regularizer loss
"""
return scale * tf.reduce_mean(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
# Under construction
# def sg_tsne(tensor, meta_file='metadata.tsv', save_dir='asset/tsne'):
# r""" Manages arguments of `tf.sg_opt`.
#
# Args:
# save_dir: A string. The root path to which checkpoint and log files are saved.
# Default is `asset/train`.
# """
#
# # make directory if not exist
# if not os.path.exists(save_dir):
# os.makedirs(save_dir)
#
# # checkpoint saver
# saver = tf.train.Saver()
#
# # summary writer
# summary_writer = tf.summary.FileWriter(save_dir, graph=tf.get_default_graph())
#
# # embedding visualizer
# config = projector.ProjectorConfig()
# emb = config.embeddings.add()
# emb.tensor_name = tensor.name # tensor
# # emb.metadata_path = os.path.join(save_dir, meta_file) # metadata file
# projector.visualize_embeddings(summary_writer, config)
#
# # create session
# sess = tf.Session()
# # initialize variables
# sg_init(sess)
#
# # save tsne
# saver.save(sess, save_dir + '/model-tsne')
#
# # logging
# tf.sg_info('Tsne saved at %s' % (save_dir + '/model-tsne'))
#
# # close session
# sess.close()