本文整理匯總了Python中streamlit.pyplot方法的典型用法代碼示例。如果您正苦於以下問題:Python streamlit.pyplot方法的具體用法?Python streamlit.pyplot怎麽用?Python streamlit.pyplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類streamlit
的用法示例。
在下文中一共展示了streamlit.pyplot方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_dist
# 需要導入模塊: import streamlit [as 別名]
# 或者: from streamlit import pyplot [as 別名]
def plot_dist(alpha_value: float, beta_value: float, data: np.ndarray = None):
beta_dist = beta(alpha_value, beta_value)
xs = np.linspace(0, 1, 1000)
ys = beta_dist.pdf(xs)
fig, ax = plt.subplots(figsize=(7, 3))
ax.plot(xs, ys)
ax.set_xlim(0, 1)
ax.set_xlabel("x")
ax.set_ylabel("P(x)")
if data is not None:
likelihoods = beta_dist.pdf(data)
sum_log_likelihoods = np.sum(beta_dist.logpdf(data))
ax.vlines(data, ymin=0, ymax=likelihoods)
ax.scatter(data, likelihoods, color="black")
st.write(
f"""
_Under your alpha={alpha_slider:.2f} and beta={beta_slider:.2f},
the sum of log likelihoods is {sum_log_likelihoods:.2f}_
"""
)
st.pyplot(fig)
示例2: decompose_series
# 需要導入模塊: import streamlit [as 別名]
# 或者: from streamlit import pyplot [as 別名]
def decompose_series(ts):
'''
This function applies a seasonal decomposition to a time series. It will generate a season plot, a trending plot, and, finally, a resid plot
Args.
ts (Pandas Series): a time series to be decomposed
'''
fig = plt.Figure(figsize=(12,7))
ax1 = plt.subplot(311)
ax2 = plt.subplot(312)
ax3 = plt.subplot(313)
try:
decomposition = seasonal_decompose(ts)
except AttributeError:
error_message = '''
Seems that your DATE column is not in a proper format.
Be sure that it\'s in a valid format for a Pandas to_datetime function.
'''
raise AttributeError(error_message)
decomposition.seasonal.plot(color='green', ax=ax1, title='Seasonality')
plt.legend('')
#plt.title('Seasonality')
#st.pyplot()
decomposition.trend.plot(color='green', ax=ax2, title='Trending')
plt.legend('')
#plt.title('Trending')
#st.pyplot()
decomposition.resid.plot(color='green', ax=ax3, title='Resid')
plt.legend('')
#plt.title('Resid')
plt.subplots_adjust(hspace=1)
st.pyplot()
示例3: predict_set
# 需要導入模塊: import streamlit [as 別名]
# 或者: from streamlit import pyplot [as 別名]
def predict_set(timeseries, y, seasonality, transformation_function, model, exog_variables=None,forecast=False, show_train_prediction=None, show_test_prediction=None):
'''
Predicts the in-sample train observations
Args.
timeseries (Pandas Series): a time series that was used to fit a model
y (str): the target column
seasonality (int): the seasonality frequency
transformation_function (func): a function used to transform the target values
model (Statsmodel object): a fitted model
exog_variables (Pandas DataFrame): exogenous (independent) variables of your model
forecast (bool): wether or not forecast the test set
show_train_prediction (bool): wether or not to plot the train set predictions
show_test_prediction (bool): wether or not to plot the test set predictions
'''
timeseries = timeseries.to_frame()
timeseries[y] = transformation_function(timeseries[y])
if forecast:
timeseries['ŷ'] = transformation_function(model.forecast(len(timeseries), exog=exog_variables))
else:
timeseries['ŷ'] = transformation_function(model.predict())
if show_train_prediction and forecast == False:
timeseries[[y, 'ŷ']].iloc[-(seasonality*3):].plot(color=['green', 'red'])
plt.ylabel(y)
plt.xlabel('')
plt.title('Train set predictions')
st.pyplot()
elif show_test_prediction and forecast:
timeseries[[y, 'ŷ']].iloc[-(seasonality*3):].plot(color=['green', 'red'])
plt.ylabel(y)
plt.xlabel('')
plt.title('Test set predictions')
st.pyplot()
try:
rmse = sqrt(mean_squared_error(timeseries[y].iloc[-(seasonality*3):], timeseries['ŷ'].iloc[-(seasonality*3):]))
aic = model.aic
bic = model.bic
hqic = model.hqic
mape = np.round(mean_abs_pct_error(timeseries[y].iloc[-(seasonality*3):], timeseries['ŷ'].iloc[-(seasonality*3):]), 2)
mae = np.round(mean_absolute_error(timeseries[y].iloc[-(seasonality*3):], timeseries['ŷ'].iloc[-(seasonality*3):]), 2)
except ValueError:
error_message = '''
There was a problem while we calculated the model metrics.
Usually this is due a problem with the format of the DATE column.
Be sure it is in a valid format for Pandas to_datetime function
'''
raise ValueError(error_message)
metrics_df = pd.DataFrame(data=[rmse, aic, bic, hqic, mape, mae], columns = ['{} SET METRICS'.format('TEST' if forecast else 'TRAIN')], index = ['RMSE', 'AIC', 'BIC', 'HQIC', 'MAPE', 'MAE'])
st.markdown('### **Metrics**')
st.dataframe(metrics_df)