本文整理匯總了Python中statsmodels.nonparametric.smoothers_lowess.lowess方法的典型用法代碼示例。如果您正苦於以下問題:Python smoothers_lowess.lowess方法的具體用法?Python smoothers_lowess.lowess怎麽用?Python smoothers_lowess.lowess使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類statsmodels.nonparametric.smoothers_lowess
的用法示例。
在下文中一共展示了smoothers_lowess.lowess方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: plot_residuals
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def plot_residuals(residual, fitted, basename, outdir=None, scale=True):
import matplotlib.pyplot as plt
from statsmodels.nonparametric.smoothers_lowess import lowess
if scale:
residual = scalearr(residual)
fitted = scalearr(fitted)
fig, ax = plt.subplots()
ax.scatter(fitted, residual)
ys = lowess(residual, fitted)[:,1]
ax.plot(np.sort(fitted), ys, 'r--')
ax.set(xlabel='Fitted values', ylabel='Residuals', title=basename)
ax.axhline(0, color='black', linestyle=':')
if outdir is not None:
fig.savefig("%s/resid_plot_%s.png" % (outdir, basename))
else:
fig.savefig("resid_plot_%s.png" % basename)
plt.clf()
示例2: calculate_engine_temperature_derivatives
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def calculate_engine_temperature_derivatives(
times, engine_coolant_temperatures):
"""
Calculates the derivative of the engine temperature [°C/s].
:param times:
Time vector [s].
:type times: numpy.array
:param engine_coolant_temperatures:
Engine coolant temperature vector [°C].
:type engine_coolant_temperatures: numpy.array
:return:
Derivative of the engine temperature [°C/s].
:rtype: numpy.array
"""
from statsmodels.nonparametric.smoothers_lowess import lowess
par = dfl.functions.calculate_engine_temperature_derivatives
temp = lowess(
engine_coolant_temperatures, times, is_sorted=True,
frac=par.tw * len(times) / (times[-1] - times[0]) ** 2, missing='none'
)[:, 1].ravel()
return _derivative(times, temp)
示例3: add_lowess
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def add_lowess(ax, lines_idx=0, frac=.2, **lowess_kwargs):
"""
Add Lowess line to a plot.
Parameters
----------
ax : matplotlib Axes instance
The Axes to which to add the plot
lines_idx : int
This is the line on the existing plot to which you want to add
a smoothed lowess line.
frac : float
The fraction of the points to use when doing the lowess fit.
lowess_kwargs
Additional keyword arguments are passes to lowess.
Returns
-------
fig : matplotlib Figure instance
The figure that holds the instance.
"""
y0 = ax.get_lines()[lines_idx]._y
x0 = ax.get_lines()[lines_idx]._x
lres = lowess(y0, x0, frac=frac, **lowess_kwargs)
ax.plot(lres[:, 0], lres[:, 1], 'r', lw=1.5)
return ax.figure
示例4: test_import
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def test_import(self):
#this doesn't work
#from statsmodels.api.nonparametric import lowess as lowess1
import statsmodels.api as sm
lowess1 = sm.nonparametric.lowess
assert_(lowess is lowess1)
示例5: test_flat
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def test_flat(self):
test_data = {
'x': np.arange(20), 'y': np.zeros(20), 'out': np.zeros(20)}
expected_lowess = np.array([test_data['x'], test_data['out']]).T
actual_lowess = lowess(test_data['y'], test_data['x'])
assert_almost_equal(expected_lowess, actual_lowess, 7)
示例6: test_range
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def test_range(self):
test_data = {
'x': np.arange(20), 'y': np.arange(20), 'out': np.arange(20)}
expected_lowess = np.array([test_data['x'], test_data['out']]).T
actual_lowess = lowess(test_data['y'], test_data['x'])
assert_almost_equal(expected_lowess, actual_lowess, 7)
示例7: generate
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def generate(name, fname, x='x', y='y', out='out', kwargs=None, decimal=7):
kwargs = {} if kwargs is None else kwargs
data = np.genfromtxt(os.path.join(rpath, fname), delimiter=',', names=True)
assert_almost_equal.description = name
if callable(kwargs):
kwargs = kwargs(data)
result = lowess(data[y], data[x], **kwargs)
expect = np.array([data[x], data[out]]).T
assert_almost_equal(result, expect, decimal)
# TODO: Refactor as parameterized test once nose is permanently dropped
示例8: plot_doppler
# 需要導入模塊: from statsmodels.nonparametric import smoothers_lowess [as 別名]
# 或者: from statsmodels.nonparametric.smoothers_lowess import lowess [as 別名]
def plot_doppler(x, tx_carrier_freq, beacon_carrier_freq):
# Doppler
plt.figure()
dop1 = (tx_carrier_freq[:, 0] - tx_carrier_freq[:, 1])
dop2 = (beacon_carrier_freq[:, 0] -
beacon_carrier_freq[:, 1])
dop_bin = (dop1 - dop2) / 2.0
# 50 km/h doppler = 433e6 * ((3e8 + 50/3.6) / 3e8 - 1)
# = 50/3.6 / 3e8 * 433e6
hz_per_bin = 2.4e6 / 16384
dop = dop_bin * hz_per_bin * 3e8 / 433e6 * 3.6
dop_outliers = is_outlier(dop)
dopx = x[~dop_outliers]
dop_smooth = lowess(dop[~dop_outliers], dopx,
is_sorted=True, frac=0.025, it=0)
plt.plot(dopx, dop[~dop_outliers], 'r', linewidth=0.2, alpha=0.5)
plt.plot(dop_smooth[:, 0], dop_smooth[:, 1], 'b')
plt.ylabel('Doppler shift (km/h)')
plt.xlabel('TX timestamp at RX0 (s)')
plt.grid()
plt.tight_layout()
# plt.show()