當前位置: 首頁>>代碼示例>>Python>>正文


Python api.ols方法代碼示例

本文整理匯總了Python中statsmodels.formula.api.ols方法的典型用法代碼示例。如果您正苦於以下問題:Python api.ols方法的具體用法?Python api.ols怎麽用?Python api.ols使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在statsmodels.formula.api的用法示例。


在下文中一共展示了api.ols方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_formula_predict_series

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_formula_predict_series():
    import pandas as pd
    import pandas.util.testing as tm
    data = pd.DataFrame({"y": [1, 2, 3], "x": [1, 2, 3]}, index=[5, 3, 1])
    results = ols('y ~ x', data).fit()

    result = results.predict(data)
    expected = pd.Series([1., 2., 3.], index=[5, 3, 1])
    tm.assert_series_equal(result, expected)

    result = results.predict(data.x)
    tm.assert_series_equal(result, expected)

    result = results.predict(pd.Series([1, 2, 3], index=[1, 2, 3], name='x'))
    expected = pd.Series([1., 2., 3.], index=[1, 2, 3])
    tm.assert_series_equal(result, expected)

    result = results.predict({"x": [1, 2, 3]})
    expected = pd.Series([1., 2., 3.], index=[0, 1, 2])
    tm.assert_series_equal(result, expected) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:22,代碼來源:test_formula.py

示例2: test_patsy_lazy_dict

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_patsy_lazy_dict():
    class LazyDict(dict):
        def __init__(self, data):
            self.data = data

        def __missing__(self, key):
            return np.array(self.data[key])

    data = cpunish.load_pandas().data
    data = LazyDict(data)
    res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()

    res2 = res.predict(data)
    npt.assert_allclose(res.fittedvalues, res2)

    data = cpunish.load_pandas().data
    data['INCOME'].loc[0] = None

    data = LazyDict(data)
    data.index = cpunish.load_pandas().data.index
    res = ols('EXECUTIONS ~ SOUTH + INCOME', data=data).fit()

    res2 = res.predict(data)
    assert_equal(res.fittedvalues, res2)  # Should lose a record
    assert_equal(len(res2) + 1, len(cpunish.load_pandas().data)) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:27,代碼來源:test_formula.py

示例3: test_results

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_results(self):
        data = self.data.drop([0,1,2])
        anova_ii = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)",
                                data).fit()

        Sum_Sq = np.array([
             151.4065, 2.904723, 13.45718, 0.1905093, 27.60181
            ])
        Df = np.array([
             1, 2, 2, 51
            ])
        F = np.array([
             6.972744, 13.7804, 0.1709936, np.nan
            ])
        PrF = np.array([
             0.01095599, 1.641682e-05, 0.8433081, np.nan
            ])

        results = anova_lm(anova_ii, typ="II", robust="hc0")
        np.testing.assert_equal(results['df'].values, Df)
        #np.testing.assert_almost_equal(results['sum_sq'].values, Sum_Sq, 4)
        np.testing.assert_almost_equal(results['F'].values, F, 4)
        np.testing.assert_almost_equal(results['PR(>F)'].values, PrF) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:25,代碼來源:test_anova.py

示例4: test_formula_missing_cat

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_formula_missing_cat():
    # gh-805

    import statsmodels.api as sm
    from statsmodels.formula.api import ols
    from patsy import PatsyError

    dta = sm.datasets.grunfeld.load_pandas().data
    dta.loc[dta.index[0], 'firm'] = np.nan

    mod = ols(formula='value ~ invest + capital + firm + year',
              data=dta.dropna())
    res = mod.fit()

    mod2 = ols(formula='value ~ invest + capital + firm + year',
               data=dta)
    res2 = mod2.fit()

    assert_almost_equal(res.params.values, res2.params.values)

    assert_raises(PatsyError, ols, 'value ~ invest + capital + firm + year',
                  data=dta, missing='raise') 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:24,代碼來源:test_regression.py

示例5: anova

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def anova(data,formula):
    '''方差分析
    輸入
    --data: DataFrame格式,包含數值型變量和分類型變量
    --formula:變量之間的關係,如:數值型變量~C(分類型變量1)[+C(分類型變量1)[+C(分類型變量1):(分類型變量1)]

    返回[方差分析表]
    [總體的方差來源於組內方差和組間方差,通過比較組間方差和組內方差的比來推斷兩者的差異]
    --df:自由度
    --sum_sq:誤差平方和
    --mean_sq:誤差平方和/對應的自由度
    --F:mean_sq之比
    --PR(>F):p值,比如<0.05則代表有顯著性差異
    '''
    import statsmodels.api as sm
    from statsmodels.formula.api import ols
    cw_lm=ols(formula, data=data).fit() #Specify C for Categorical
    r=sm.stats.anova_lm(cw_lm)
    return r 
開發者ID:gasongjian,項目名稱:reportgen,代碼行數:21,代碼來源:questionnaire.py

示例6: test_statsmodels

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_statsmodels():

    statsmodels = import_module('statsmodels')  # noqa
    import statsmodels.api as sm
    import statsmodels.formula.api as smf
    df = sm.datasets.get_rdataset("Guerry", "HistData").data
    smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=df).fit()


# Cython import warning 
開發者ID:Frank-qlu,項目名稱:recruit,代碼行數:12,代碼來源:test_downstream.py

示例7: initialize

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def initialize(cls):
        from statsmodels.formula.api import ols, glm, poisson
        from statsmodels.discrete.discrete_model import Poisson

        mod = ols("np.log(Days+1) ~ C(Duration, Sum)*C(Weight, Sum)", cls.data)
        cls.res = mod.fit(use_t=False) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:8,代碼來源:test_generic_methods.py

示例8: setup_class

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def setup_class(cls):
        from statsmodels.formula.api import ols
        import statsmodels.stats.tests.test_anova as ttmod

        test = ttmod.TestAnova3()
        test.setup_class()
        cls.data = test.data.drop([0,1,2])

        mod = ols("np.log(Days+1) ~ C(Duration) + C(Weight)", cls.data)
        cls.res = mod.fit()
        cls.term_name = "C(Weight)"
        cls.constraints = ['C(Weight)[T.2]',
                           'C(Weight)[T.3]',
                           'C(Weight)[T.3] - C(Weight)[T.2]'] 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:16,代碼來源:test_generic_methods.py

示例9: test_one_column_exog

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_one_column_exog(self):
        from statsmodels.formula.api import ols
        res = ols("y~var1-1", data=self.data).fit()
        fig = plot_regress_exog(res, "var1")
        plt.close(fig)
        res = ols("y~var1", data=self.data).fit()
        fig = plot_regress_exog(res, "var1")
        plt.close(fig) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:10,代碼來源:test_regressionplots.py

示例10: setup_class

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def setup_class(cls):
        data = load_pandas().data
        cls.model = ols(longley_formula, data)
        super(TestFormulaPandas, cls).setup_class() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:6,代碼來源:test_formula.py

示例11: test_tests

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_tests():
    formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR'
    dta = load_pandas().data
    results = ols(formula, dta).fit()
    test_formula = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)'
    LC = make_hypotheses_matrices(results, test_formula)
    R = LC.coefs
    Q = LC.constants
    npt.assert_almost_equal(R, [[0, 1, -1, 0, 0, 0, 0],
                               [0, 0 , 0, 1, 0, 0, 0],
                               [0, 0, 0, 0, 0, 0, 1./1829]], 8)
    npt.assert_array_equal(Q, [[0],[2],[1]]) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:14,代碼來源:test_formula.py

示例12: test_formula_labels

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_formula_labels():
    # make sure labels pass through patsy as expected
    # data(Duncan) from car in R
    dta = StringIO(""""type" "income" "education" "prestige"\n"accountant" "prof" 62 86 82\n"pilot" "prof" 72 76 83\n"architect" "prof" 75 92 90\n"author" "prof" 55 90 76\n"chemist" "prof" 64 86 90\n"minister" "prof" 21 84 87\n"professor" "prof" 64 93 93\n"dentist" "prof" 80 100 90\n"reporter" "wc" 67 87 52\n"engineer" "prof" 72 86 88\n"undertaker" "prof" 42 74 57\n"lawyer" "prof" 76 98 89\n"physician" "prof" 76 97 97\n"welfare.worker" "prof" 41 84 59\n"teacher" "prof" 48 91 73\n"conductor" "wc" 76 34 38\n"contractor" "prof" 53 45 76\n"factory.owner" "prof" 60 56 81\n"store.manager" "prof" 42 44 45\n"banker" "prof" 78 82 92\n"bookkeeper" "wc" 29 72 39\n"mail.carrier" "wc" 48 55 34\n"insurance.agent" "wc" 55 71 41\n"store.clerk" "wc" 29 50 16\n"carpenter" "bc" 21 23 33\n"electrician" "bc" 47 39 53\n"RR.engineer" "bc" 81 28 67\n"machinist" "bc" 36 32 57\n"auto.repairman" "bc" 22 22 26\n"plumber" "bc" 44 25 29\n"gas.stn.attendant" "bc" 15 29 10\n"coal.miner" "bc" 7 7 15\n"streetcar.motorman" "bc" 42 26 19\n"taxi.driver" "bc" 9 19 10\n"truck.driver" "bc" 21 15 13\n"machine.operator" "bc" 21 20 24\n"barber" "bc" 16 26 20\n"bartender" "bc" 16 28 7\n"shoe.shiner" "bc" 9 17 3\n"cook" "bc" 14 22 16\n"soda.clerk" "bc" 12 30 6\n"watchman" "bc" 17 25 11\n"janitor" "bc" 7 20 8\n"policeman" "bc" 34 47 41\n"waiter" "bc" 8 32 10""")
    from pandas import read_table
    dta = read_table(dta, sep=" ")
    model = ols("prestige ~ income + education", dta).fit()
    assert_equal(model.fittedvalues.index, dta.index) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:10,代碼來源:test_formula.py

示例13: test_formula_predict

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_formula_predict():
    from numpy import log
    formula = """TOTEMP ~ log(GNPDEFL) + log(GNP) + UNEMP + ARMED +
                    POP + YEAR"""
    data = load_pandas()
    dta = load_pandas().data
    results = ols(formula, dta).fit()
    npt.assert_almost_equal(results.fittedvalues.values,
                            results.predict(data.exog), 8) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:11,代碼來源:test_formula.py

示例14: test_compare_OLS

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def test_compare_OLS(self):
        # Gaussian GEE with independence correlation should agree
        # exactly with OLS for parameter estimates and standard errors
        # derived from the naive covariance estimate.

        vs = Independence()
        family = Gaussian()

        Y = np.random.normal(size=100)
        X1 = np.random.normal(size=100)
        X2 = np.random.normal(size=100)
        X3 = np.random.normal(size=100)
        groups = np.kron(lrange(20), np.ones(5))

        D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3})

        md = GEE.from_formula("Y ~ X1 + X2 + X3", groups, D,
                              family=family, cov_struct=vs)
        mdf = md.fit()

        ols = smf.ols("Y ~ X1 + X2 + X3", data=D).fit()

        # don't use wrapper, asserts_xxx don't work
        ols = ols._results

        assert_almost_equal(ols.params, mdf.params, decimal=10)

        se = mdf.standard_errors(cov_type="naive")
        assert_almost_equal(ols.bse, se, decimal=10)

        naive_tvalues = mdf.params / \
            np.sqrt(np.diag(mdf.cov_naive))
        assert_almost_equal(naive_tvalues, ols.tvalues, decimal=10) 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:35,代碼來源:test_gee.py

示例15: setup_class

# 需要導入模塊: from statsmodels.formula import api [as 別名]
# 或者: from statsmodels.formula.api import ols [as 別名]
def setup_class(cls):
        # kidney data taken from JT's course
        # don't know the license
        cls.data = kidney_table
        cls.kidney_lm = ols('np.log(Days+1) ~ C(Duration) * C(Weight)',
                        data=cls.data).fit() 
開發者ID:birforce,項目名稱:vnpy_crypto,代碼行數:8,代碼來源:test_anova.py


注:本文中的statsmodels.formula.api.ols方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。