當前位置: 首頁>>代碼示例>>Python>>正文


Python statistics.pvariance方法代碼示例

本文整理匯總了Python中statistics.pvariance方法的典型用法代碼示例。如果您正苦於以下問題:Python statistics.pvariance方法的具體用法?Python statistics.pvariance怎麽用?Python statistics.pvariance使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在statistics的用法示例。


在下文中一共展示了statistics.pvariance方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: DVOLA

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def DVOLA(df, n=30, price='Close'):
    """
    Daily Volatility
    Returns: list of floats = jhta.DVOLA(df, n=30, price='Close')
    Source: https://www.wallstreetmojo.com/volatility-formula/
    """
    dvola_list = []
    for i in range(len(df[price])):
        if i + 1 < n:
            dvola = float('NaN')
        else:
            start = i + 1 - n
            end = i + 1
            pvariance = statistics.pvariance(df[price][start:end])
            dvola = math.sqrt(pvariance)
        dvola_list.append(dvola)
    return dvola_list 
開發者ID:joosthoeks,項目名稱:jhTAlib,代碼行數:19,代碼來源:volatility_indicators.py

示例2: pvariance

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def pvariance(self):
        return statistics.pvariance(self.price)

    # 方差 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:6,代碼來源:QAAnalysis_dataframe.py

示例3: pvariance

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def pvariance(self):
        '返回DataStruct.price的方差 variance'
        res = self.price.groupby(level=1
                                 ).apply(lambda x: statistics.pvariance(x))
        res.name = 'pvariance'
        return res

    # 方差 
開發者ID:QUANTAXIS,項目名稱:QUANTAXIS,代碼行數:10,代碼來源:base_datastruct.py

示例4: test_compare_to_variance

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def test_compare_to_variance(self):
        # Test that stdev is, in fact, the square root of variance.
        data = [random.uniform(-17, 24) for _ in range(1000)]
        expected = math.sqrt(statistics.pvariance(data))
        self.assertEqual(self.func(data), expected) 
開發者ID:Microvellum,項目名稱:Fluid-Designer,代碼行數:7,代碼來源:test_statistics.py

示例5: PVARIANCE

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def PVARIANCE(df, n, price='Close', mu=None):
    """
    Population variance of data
    Returns: list of floats = jhta.PVARIANCE(df, n, price='Close', mu=None)
    """
    pvariance_list = []
    if n == len(df[price]):
        start = None
        for i in range(len(df[price])):
            if df[price][i] != df[price][i]:
                pvariance = float('NaN')
            else:
                if start is None:
                    start = i
                end = i + 1
                pvariance = statistics.pvariance(df[price][start:end], mu)
            pvariance_list.append(pvariance)
    else:
        for i in range(len(df[price])):
            if i + 1 < n:
                pvariance = float('NaN')
            else:
                start = i + 1 - n
                end = i + 1
                pvariance = statistics.pvariance(df[price][start:end], mu)
            pvariance_list.append(pvariance)
    return pvariance_list 
開發者ID:joosthoeks,項目名稱:jhTAlib,代碼行數:29,代碼來源:statistic_functions.py

示例6: test_plain

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def test_plain(self):
        f = lambda: (i * j for i in range(-1, 2, 1) for j in range(2, -2, -1))
        self.assertEqual(mean(f()), statistics.mean(f()))
        self.assertEqual(variance(f()), statistics.variance(f()))
        self.assertEqual(stdev(f()), statistics.stdev(f()))
        self.assertEqual(pvariance(f()), statistics.pvariance(f()))
        self.assertEqual(pstdev(f()), statistics.pstdev(f()))
        self.assertEqual(mode(f()), statistics.mode(f()))
        self.assertEqual(median(f()), statistics.median(f())) 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:11,代碼來源:test_statistics.py

示例7: test_statistics_error

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def test_statistics_error(self):
        self.assertRaises(statistics.StatisticsError, mean, [])
        self.assertRaises(statistics.StatisticsError, variance, [0])
        self.assertRaises(statistics.StatisticsError, stdev, [0])
        self.assertRaises(statistics.StatisticsError, pvariance, [])
        self.assertRaises(statistics.StatisticsError, pstdev, [])
        self.assertRaises(statistics.StatisticsError, mode, [])
        self.assertRaises(statistics.StatisticsError, median, []) 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:10,代碼來源:test_statistics.py

示例8: test_secint

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def test_secint(self):
        secint = mpc.SecInt()
        y = [1, 3, -2, 3, 1, -2, -2, 4] * 5
        random.shuffle(y)
        x = list(map(secint, y))
        self.assertEqual(mpc.run(mpc.output(mean(x))), round(statistics.mean(y)))
        self.assertEqual(mpc.run(mpc.output(variance(x))), round(statistics.variance(y)))
        self.assertEqual(mpc.run(mpc.output(variance(x, mean(x)))), round(statistics.variance(y)))
        self.assertEqual(mpc.run(mpc.output(stdev(x))), round(statistics.stdev(y)))
        self.assertEqual(mpc.run(mpc.output(pvariance(x))), round(statistics.pvariance(y)))
        self.assertEqual(mpc.run(mpc.output(pstdev(x))), round(statistics.pstdev(y)))
        self.assertEqual(mpc.run(mpc.output(mode(x))), round(statistics.mode(y)))
        self.assertEqual(mpc.run(mpc.output(median(x))), round(statistics.median(y)))
        self.assertEqual(mpc.run(mpc.output(median_low(x))), round(statistics.median_low(y)))
        self.assertEqual(mpc.run(mpc.output(median_high(x))), round(statistics.median_high(y))) 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:17,代碼來源:test_statistics.py

示例9: test_secfxp

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def test_secfxp(self):
        secfxp = mpc.SecFxp()
        x = [1, 1, 2, 2, 3, 4, 4, 4, 6] * 5
        random.shuffle(x)
        x = list(map(secfxp, x))
        self.assertAlmostEqual(mpc.run(mpc.output(mean(x))).signed(), 3, delta=1)
        self.assertAlmostEqual(mpc.run(mpc.output(median(x))).signed(), 3)
        self.assertAlmostEqual(mpc.run(mpc.output(mode(x))).signed(), 4)

        x = [1, 1, 1, 1, 2, 2, 3, 4, 4, 4, 4, 5, 6, 6, 6] * 100
        random.shuffle(x)
        x = list(map(lambda a: a * 2**-4, x))
        x = list(map(secfxp, x))
        self.assertAlmostEqual(mpc.run(mpc.output(mean(x))).signed(), (2**-4) * 10/3, delta=1)

        y = [1.75, 1.25, -0.25, 0.5, 1.25, -3.5] * 5
        random.shuffle(y)
        x = list(map(secfxp, y))
        self.assertAlmostEqual(float(mpc.run(mpc.output(mean(x)))), statistics.mean(y), 4)
        self.assertAlmostEqual(float(mpc.run(mpc.output(variance(x)))), statistics.variance(y), 2)
        self.assertAlmostEqual(float(mpc.run(mpc.output(stdev(x)))), statistics.stdev(y), 3)
        self.assertAlmostEqual(float(mpc.run(mpc.output(pvariance(x)))), statistics.pvariance(y), 2)
        self.assertAlmostEqual(float(mpc.run(mpc.output(pstdev(x)))), statistics.pstdev(y), 3)
        self.assertAlmostEqual(float(mpc.run(mpc.output(median(x)))), statistics.median(y), 4)

        x = list(map(secfxp, [1.0]*10))
        self.assertAlmostEqual(mpc.run(mpc.output(mode(x))).signed(), 1)
        k = mpc.options.sec_param
        mpc.options.sec_param = 1  # force no privacy case
        self.assertAlmostEqual(mpc.run(mpc.output(mode(x))).signed(), 1)
        mpc.options.sec_param = k 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:33,代碼來源:test_statistics.py

示例10: variance

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def variance(data, xbar=None):
    """Return the sample variance of data, an iterable of at least two numbers.

    If the optional second argument xbar is given, it should be the mean of data.
    If it is missing or None (the default), the mean is automatically calculated.

    Use this function when your data is a sample from a population. To calculate
    the variance from the entire population, see pvariance().

    Raises StatisticsError if data has fewer than two values.
    """
    return _var(data, xbar, 1) 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:14,代碼來源:statistics.py

示例11: pstdev

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def pstdev(data, mu=None):
    """Return the population standard deviation (square root of the population variance).

    See pvariance() for arguments and other details.
    """
    return _std(data, mu, 0) 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:8,代碼來源:statistics.py

示例12: _var

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def _var(data, m, correction):
    if iter(data) is data:
        x = list(data)
    else:
        x = data
    n = len(x)
    if n < 1 + correction:
        if correction:
            e = 'variance requires at least two data points'
        else:
            e = 'pvariance requires at least one data point'
        raise statistics.StatisticsError(e)

    stype = type(x[0])  # all elts of x assumed of same type
    if issubclass(stype, sectypes.SecureFiniteField):
        raise TypeError('secure fixed-point or integer type required')

    if issubclass(stype, sectypes.SecureInteger):
        if m is None:
            s = runtime.sum(x)
            y = [a * n - s for a in x]  # TODO: runtime.scalar_mul(n,x) for public (int) n
            d = n**2 * (n - correction)
        else:
            y = runtime.vector_sub(x, [m] * n)  # TODO: runtime.vector_sub(x,y) for scalar y
            d = n - correction
        return (runtime.in_prod(y, y) + d//2) // d

    if issubclass(stype, sectypes.SecureFixedPoint):
        if m is None:
            m = mean(x)
        y = runtime.vector_sub(x, [m] * n)
        d = n - correction
        return runtime.in_prod(y, y) / d

    if correction:
        return statistics.variance(x, m)

    return statistics.pvariance(x, m) 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:40,代碼來源:statistics.py

示例13: variance

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def variance(lst):
    return statistics.pvariance(lst) 
開發者ID:TuringApp,項目名稱:Turing,代碼行數:4,代碼來源:stats.py

示例14: time_testcase_statistics

# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pvariance [as 別名]
def time_testcase_statistics(
    testcase: typing.Callable,
    *args: typing.Any,
    runs: int = 10,
    sleep: float = 0,
    **kwargs: typing.Any,
) -> None:
    """
    Take multiple measurements about the run-time of a testcase and return/display statistics.

    :param testcase: Testcase to call.
    :param args,\\ kwargs: Arguments to pass to the testcase.
    :param int runs: How many samples to take.
    :param float sleep: How much time to sleep in between the runs.  Example
        use:  Maybe the board does not discharge quick enough so it can cause
        troubles when the subsecuent testcase run tries to boot again the board
    """

    elapsed_times = []

    for n in range(runs):
        elapsed_time, _ = time_testcase(testcase, *args, **kwargs)
        elapsed_times.append(elapsed_time)
        time.sleep(sleep)

    results = TimingResults(
        statistics.mean(elapsed_times),
        statistics.harmonic_mean(elapsed_times),
        statistics.median(elapsed_times),
        statistics.pvariance(elapsed_times),
        statistics.pstdev(elapsed_times),
    )

    tbot.log.message(
        f"""\
    Timing Results:
        {tbot.log.c('mean').green}: {results.mean}
        {tbot.log.c('harmonic mean').green}: {results.harmonic_mean}
        {tbot.log.c('median').green}: {results.median}
        {tbot.log.c('variance').green}: {results.pvariance}
        {tbot.log.c('standard deviation').green}: {results.pstdev}
    """
    ) 
開發者ID:Rahix,項目名稱:tbot,代碼行數:45,代碼來源:__init__.py


注:本文中的statistics.pvariance方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。