本文整理匯總了Python中statistics.pstdev方法的典型用法代碼示例。如果您正苦於以下問題:Python statistics.pstdev方法的具體用法?Python statistics.pstdev怎麽用?Python statistics.pstdev使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類statistics
的用法示例。
在下文中一共展示了statistics.pstdev方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: diagnosticity
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def diagnosticity(evaluations):
"""Return the diagnosticity of a piece of evidence given its evaluations against a set of hypotheses.
:param evaluations: an iterable of iterables of Eval for a piece of evidence
"""
# The "diagnosticity" needs to capture how well the evidence separates/distinguishes the hypotheses. If we don't
# show a preference between consistent/inconsistent, STDDEV captures this intuition OK. However, in the future,
# we may want to favor evidence for which hypotheses are inconsistent. Additionally, we may want to calculate
# "marginal diagnosticity" which takes into the rest of the evidence.
# (1) calculate the consensus for each hypothesis
# (2) map N/A to neutral because N/A doesn't help determine consistency of the evidence
# (3) calculate the population standard deviation of the evidence. It's more reasonable to consider the set of
# hypotheses at a given time to be the population of hypotheses than as a "sample" (although it doesn't matter
# much because we're comparing across hypothesis sets of the same size)
na_neutral = map(mean_na_neutral_vote, evaluations) # pylint: disable=bad-builtin
try:
return statistics.pstdev(filter(None.__ne__, na_neutral)) # pylint: disable=bad-builtin
except statistics.StatisticsError:
return 0.0
示例2: sharpRatio
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def sharpRatio(
_returns: DataStruct,
_factor: int = 252,
_risk_free: float = 0.0,
_fund_index: str = 'fund'
) -> float:
fund = _returns[_fund_index]
tmp_list = [
a / b - 1.0 - _risk_free for a, b in zip(
fund[1:], fund[:-1]
)
]
return statistics.mean(
tmp_list
) / statistics.pstdev(
tmp_list
) * math.sqrt(_factor)
示例3: _addOne
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def _addOne(self, _data_struct: DataStruct):
index_value = _data_struct.index()[0]
price_value = _data_struct[self.use_key][0]
if self.last_price is not None:
chg_rate = price_value / self.last_price - 1
self.buf.append(chg_rate)
std_value = statistics.pstdev(self.buf) * self.factor
if self.smooth > 1 and len(self.data):
last_std_value = self.data[self.ret_key][-1]
std_value = (
(self.smooth - 1) * last_std_value + std_value
) / self.smooth
self.data.addDict({
self.idx_key: index_value,
self.ret_key: std_value,
})
self.last_price = price_value
示例4: debias
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def debias(fragments):
if CLI_ARGS.debias is not None:
for debias in CLI_ARGS.debias:
grouped = engroup(fragments, lambda f: f.meta[debias])
if UNKNOWN in grouped:
fragments = grouped[UNKNOWN]
del grouped[UNKNOWN]
else:
fragments = []
counts = list(map(lambda f: len(f), grouped.values()))
mean = statistics.mean(counts)
sigma = statistics.pstdev(counts, mu=mean)
cap = int(mean + CLI_ARGS.debias_sigma_factor * sigma)
counter = Counter()
for group, group_fragments in progress(grouped.items(), desc='De-biasing "{}"'.format(debias)):
if len(group_fragments) > cap:
group_fragments.sort(key=lambda f: f.quality)
counter[group] += len(group_fragments) - cap
group_fragments = group_fragments[-cap:]
fragments.extend(group_fragments)
if len(counter.keys()) > 0:
logging.info('Dropped for de-biasing "{}":'.format(debias))
for group, count in counter.most_common():
logging.info(' - "{}": {}'.format(group, count))
return fragments
示例5: calculate_time_differences_std
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def calculate_time_differences_std(timestamp_list):
if len(timestamp_list) == 1:
time_differences_std = 0.0
else:
timestamp_differences = get_timestamp_differences(timestamp_list)
time_differences_std = statistics.pstdev(timestamp_differences)
return time_differences_std
示例6: update_time_difference_std
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def update_time_difference_std(timestamp_differences):
"""
Time difference standard deviation update.
Input: - timestamp_differences: The list of all action timestamp differences.
Output: - time_difference_std: The time difference standard deviation.
"""
time_difference_std = statistics.pstdev(timestamp_differences)
return time_difference_std
示例7: stdev
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def stdev(arr):
"""
Compute the standard deviation.
"""
if sys.version_info >= (3, 0):
import statistics
return statistics.pstdev(arr)
else:
# Dependency on NumPy
try:
import numpy
return numpy.std(arr, axis=0)
except ImportError:
return 0.
示例8: pstdev
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def pstdev(self):
return statistics.pstdev(self.price)
# 調和平均數
示例9: pstdev
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def pstdev(self):
'返回DataStruct.price的總體標準差 Population standard deviation'
res = self.price.groupby(level=1).apply(lambda x: statistics.pstdev(x))
res.name = 'pstdev'
return res
# 調和平均數
示例10: calculate_everything
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def calculate_everything(arg):
average = statistics.mean(arg)
minimum = min(arg)
maximum = max(arg)
standard_deviation = statistics.pstdev(arg)
return [average, minimum, maximum, standard_deviation]
示例11: zscores
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def zscores(original: Sequence[float]) -> List[float]:
avg: float = mean(original)
std: float = pstdev(original)
if std == 0: # return all zeros if there is no variation
return [0] * len(original)
return [(x - avg) / std for x in original]
示例12: stats
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def stats(self):
# Compute statistics
ep_stats = self._episodes_stats()
steps_stats = self._steps_stats(update_index=True)
# Overall stats
num_logs = len(self.all_rewards) // self.interval
msg = '-' * 20 + ' ' + self.title + ' Log ' + str(num_logs) + ' ' + '-' * 20 + '\n'
msg += 'Overall:' + '\n'
msg += '- Steps: ' + str(self.num_steps) + '\n'
msg += '- Episodes: ' + str(self.num_episodes) + '\n'
# Episodes stats
msg += 'Last ' + str(self.ep_interval) + ' Episodes:' + '\n'
msg += '- Mean episode length: ' + '%.2f' % mean(ep_stats['episode_lengths'])
msg += ' +/- ' + '%.2f' % pstdev(ep_stats['episode_lengths']) + '\n'
msg += '- Mean episode reward: ' + '%.2f' % mean(ep_stats['episode_rewards'])
msg += ' +/- ' + '%.2f' % pstdev(ep_stats['episode_rewards']) + '\n'
# Steps stats
msg += 'Last ' + str(self.interval) + ' Steps:' + '\n'
msg += '- Episodes: ' + str(steps_stats['num_episodes']) + '\n'
msg += '- Mean episode length: ' + '%.2f' % mean(steps_stats['episode_lengths'])
msg += ' +/- ' + '%.2f' % pstdev(steps_stats['episode_lengths']) + '\n'
msg += '- Mean episode reward: ' + '%.2f' % mean(steps_stats['episode_rewards'])
msg += ' +/- ' + '%.2f' % pstdev(steps_stats['episode_rewards']) + '\n'
for key in self.values.keys():
msg += '- Mean ' + key + ': ' + '%.2f' % mean(steps_stats[key])
msg += ' +/- ' + '%.2f' % pstdev(steps_stats[key]) + '\n'
return msg, ep_stats, steps_stats
示例13: _addOne
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def _addOne(self, _data_struct: DataStruct):
index_value = _data_struct.index()[0]
self.buf.append(_data_struct.getColumn(self.use_key)[0])
self.data.addDict({
self.idx_key: index_value,
self.ret_key: statistics.pstdev(self.buf),
})
示例14: _addOne
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def _addOne(self, _data_struct: DataStruct):
index_value = _data_struct.index()[0]
self.buf.append(_data_struct.getColumn(self.use_key)[0])
if len(self.data) > self.period:
const_std = statistics.pstdev(self.buf[-self.period:])
self.dynamic_n *= const_std / self.prev_std
self.dynamic_n = max(self.min_n, self.dynamic_n)
self.dynamic_n = min(self.max_n, self.dynamic_n)
tmp_n = int(round(self.dynamic_n))
mean = statistics.mean(self.buf[-tmp_n:])
std = statistics.pstdev(self.buf[-tmp_n:])
self.data.addRow(
[index_value, mean + self.rate * std,
mean, mean - self.rate * std],
self.keys
)
self.prev_std = const_std
else:
if len(self.data) == self.period:
self.prev_std = statistics.pstdev(self.buf)
self.data.addRow(
[index_value, None, None, None],
self.keys
)
示例15: _addOne
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import pstdev [as 別名]
def _addOne(self, _data_struct: DataStruct):
index_value = _data_struct.index()[0]
self.buf.append(_data_struct.getColumn(self.use_key)[0])
mean = statistics.mean(self.buf)
std = statistics.pstdev(self.buf, mu=mean)
self.data.addRow([
index_value, mean + self.rate * std, mean, mean - self.rate * std
], self.keys)