本文整理匯總了Python中statistics.median方法的典型用法代碼示例。如果您正苦於以下問題:Python statistics.median方法的具體用法?Python statistics.median怎麽用?Python statistics.median使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類statistics
的用法示例。
在下文中一共展示了statistics.median方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: transpose_metrics
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def transpose_metrics():
""" flatten data up to the timestamp"""
for timestamp in track['current_dict'].keys():
track['line_count'] += 1
new_row = dict()
new_row['timestamp'] = timestamp
for key in track['current_dict'][timestamp]:
value = track['current_dict'][timestamp][key]
if '|' in value:
value = statistics.median(map(lambda v: float(v), value.split('|')))
new_row[key] = str(value)
track['current_row'].append(new_row)
################################
# Functions to send data to IF #
################################
示例2: transpose_metrics
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def transpose_metrics():
""" flatten data up to the timestamp"""
for timestamp in track['current_dict'].keys():
logger.debug(timestamp)
track['line_count'] += 1
new_row = dict()
new_row['timestamp'] = timestamp
for key in track['current_dict'][timestamp]:
value = track['current_dict'][timestamp][key]
if '|' in value:
value = statistics.median(map(lambda v: float(v), value.split('|')))
new_row[key] = str(value)
track['current_row'].append(new_row)
################################
# Functions to send data to IF #
################################
示例3: transpose_metrics
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def transpose_metrics():
""" builds a flatten data up to the timestamp"""
for timestamp in track['current_dict'].keys():
new_row = dict()
new_row['timestamp'] = timestamp
for key in track['current_dict'][timestamp]:
value = track['current_dict'][timestamp][key]
if '|' in value:
value = median(map(lambda v: int(v), value.split('|')))
new_row[key] = str(value)
track['current_row'].append(new_row)
################################
# Functions to send data to IF #
################################
示例4: evaluate_and_update_max_score
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def evaluate_and_update_max_score(self, t, episodes):
eval_stats = eval_performance(
self.env, self.agent, self.n_steps, self.n_episodes,
max_episode_len=self.max_episode_len,
logger=self.logger)
elapsed = time.time() - self.start_time
custom_values = tuple(tup[1] for tup in self.agent.get_statistics())
mean = eval_stats['mean']
values = (t,
episodes,
elapsed,
mean,
eval_stats['median'],
eval_stats['stdev'],
eval_stats['max'],
eval_stats['min']) + custom_values
record_stats(self.outdir, values)
if mean > self.max_score:
self.logger.info('The best score is updated %s -> %s',
self.max_score, mean)
self.max_score = mean
if self.save_best_so_far_agent:
save_agent(self.agent, "best", self.outdir, self.logger)
return mean
示例5: eval_performance
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def eval_performance(process_idx, make_env, model, phi, n_runs):
assert n_runs > 1, 'Computing stdev requires at least two runs'
scores = []
for i in range(n_runs):
model.reset_state()
env = make_env(process_idx, test=True)
obs = env.reset()
done = False
test_r = 0
while not done:
s = chainer.Variable(np.expand_dims(phi(obs), 0))
pout, _ = model.pi_and_v(s)
a = pout.action_indices[0]
obs, r, done, info = env.step(a)
test_r += r
scores.append(test_r)
print('test_{}:'.format(i), test_r)
mean = statistics.mean(scores)
median = statistics.median(scores)
stdev = statistics.stdev(scores)
return mean, median, stdev
示例6: eval_performance
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def eval_performance(rom, p_func, n_runs):
assert n_runs > 1, 'Computing stdev requires at least two runs'
scores = []
for i in range(n_runs):
env = ale.ALE(rom, treat_life_lost_as_terminal=False)
test_r = 0
while not env.is_terminal:
s = chainer.Variable(np.expand_dims(dqn_phi(env.state), 0))
pout = p_func(s)
a = pout.action_indices[0]
test_r += env.receive_action(a)
scores.append(test_r)
print('test_{}:'.format(i), test_r)
mean = statistics.mean(scores)
median = statistics.median(scores)
stdev = statistics.stdev(scores)
return mean, median, stdev
示例7: get_partitions_info_str
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def get_partitions_info_str(j):
partitions = j['components']['partition_counts']['counts']
partitions_info = {
'Partitions': len(partitions),
'Rows': sum(partitions),
'Empty partitions': len([p for p in partitions if p == 0])
}
if partitions_info['Partitions'] > 1:
partitions_info.update({
'Min(rows/partition)': min(partitions),
'Max(rows/partition)': max(partitions),
'Median(rows/partition)': median(partitions),
'Mean(rows/partition)': int(mean(partitions)),
'StdDev(rows/partition)': int(stdev(partitions))
})
return "\n{}".format(IDENT).join(['{}: {}'.format(k, v) for k, v in partitions_info.items()])
示例8: get_center_ip_entities
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def get_center_ip_entities(
ip_entities: Iterable[IpAddress], mode: str = "median"
) -> Tuple[float, float]:
"""
Return the geographical center of the IP address locations.
Parameters
----------
ip_entities : Iterable[IpAddress]
IpAddress entities with location information
mode : str, optional
The averaging method to us, by default "median".
"median" and "mean" are the supported values.
Returns
-------
Tuple[Union[int, float], Union[int, float]]
Tuple of latitude, longitude
"""
ip_locs_longs = _extract_locs_ip_entities(ip_entities)
return get_center_geo_locs(ip_locs_longs, mode=mode)
示例9: get_center_geo_locs
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def get_center_geo_locs(
loc_entities: Iterable[GeoLocation], mode: str = "median"
) -> Tuple[float, float]:
"""
Return the geographical center of the geo locations.
Parameters
----------
loc_entities : Iterable[GeoLocation]
GeoLocation entities with location information
mode : str, optional
The averaging method to use, by default "median".
"median" and "mean" are the supported values.
Returns
-------
Tuple[Union[int, float], Union[int, float]]
Tuple of latitude, longitude
"""
lat_longs = _extract_coords_loc_entities(loc_entities)
return _get_center_coords(lat_longs, mode=mode)
示例10: _get_center_coords
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def _get_center_coords(
locations: Iterable[Tuple[float, float]], mode: str = "median"
) -> Tuple[float, float]:
"""Return the center (median) of the coordinates."""
if not locations:
return 0, 0
locs = list(locations)
if mode == "median":
try:
return (
stats.median([loc[0] for loc in locs if not math.isnan(loc[0])]),
stats.median([loc[1] for loc in locs if not math.isnan(loc[1])]),
)
except stats.StatisticsError:
pass
return (
stats.mean([loc[0] for loc in locs if not math.isnan(loc[0])]),
stats.mean([loc[1] for loc in locs if not math.isnan(loc[1])]),
)
示例11: get_mad_decision_frontier
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def get_mad_decision_frontier(values_array, trigger_sensitivity, trigger_on):
"""
Compute median decision frontier
:param values_array: list of values used to make the computation
:param trigger_sensitivity: sensitivity
:param trigger_on: high or low
:return: the decision frontier
"""
mad = np.nanmedian(np.absolute(values_array - np.nanmedian(values_array, 0)), 0) # median absolute deviation
if trigger_on == "high":
decision_frontier = np.nanmedian(values_array) + trigger_sensitivity * mad
elif trigger_on == "low":
decision_frontier = np.nanmedian(values_array) - trigger_sensitivity * mad
else:
raise ValueError("Unexpected trigger condition " + trigger_on + ", could not calculate decision frontier")
return decision_frontier
示例12: test_odd_number_repeated
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def test_odd_number_repeated(self):
# Test median.grouped with repeated median values.
data = [12, 13, 14, 14, 14, 15, 15]
assert len(data)%2 == 1
self.assertEqual(self.func(data), 14)
#---
data = [12, 13, 14, 14, 14, 14, 15]
assert len(data)%2 == 1
self.assertEqual(self.func(data), 13.875)
#---
data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
assert len(data)%2 == 1
self.assertEqual(self.func(data, 5), 19.375)
#---
data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
assert len(data)%2 == 1
self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
示例13: test_even_number_repeated
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def test_even_number_repeated(self):
# Test median.grouped with repeated median values.
data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
assert len(data)%2 == 0
self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
#---
data = [2, 3, 4, 4, 4, 5]
assert len(data)%2 == 0
self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
#---
data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 4.5)
#---
data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
assert len(data)%2 == 0
self.assertEqual(self.func(data), 4.75)
示例14: run_users
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def run_users(url, payload, mnu, mxu):
payload_len = len(payload)
async with aiohttp.ClientSession() as session:
for i in range(mnu, mxu + 1):
tasks = []
for _ in range(0, i):
user_id = uuid.uuid4().hex
tasks.append(asyncio.ensure_future(perform_test_dialogue(session, url, user_id, payload)))
test_start_time = time()
responses = await asyncio.gather(*tasks)
test_time = time() - test_start_time
times = []
for resp in responses:
times.extend(resp)
print(f'test No {i} finished: {max(times)} {min(times)} {mean(times)} {median(times)} '
f'total_time {test_time} msgs {i*payload_len} mean_rps {(i*payload_len)/test_time}')
示例15: evaluate_and_update_max_score
# 需要導入模塊: import statistics [as 別名]
# 或者: from statistics import median [as 別名]
def evaluate_and_update_max_score(self, t, episodes):
eval_stats = eval_performance(
self.env, self.agent, self.n_runs,
max_episode_len=self.max_episode_len, explorer=self.explorer,
logger=self.logger)
elapsed = time.time() - self.start_time
custom_values = tuple(tup[1] for tup in self.agent.get_statistics())
mean = eval_stats['mean']
values = (t,
episodes,
elapsed,
mean,
eval_stats['median'],
eval_stats['stdev'],
eval_stats['max'],
eval_stats['min']) + custom_values
record_stats(self.outdir, values)
if mean > self.max_score:
self.logger.info('The best score is updated %s -> %s',
self.max_score, mean)
self.max_score = mean
if self.save_best_so_far_agent:
save_agent(self.agent, t, self.outdir, self.logger)
return mean