本文整理匯總了Python中stable_baselines.common.vec_env.VecNormalize方法的典型用法代碼示例。如果您正苦於以下問題:Python vec_env.VecNormalize方法的具體用法?Python vec_env.VecNormalize怎麽用?Python vec_env.VecNormalize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類stable_baselines.common.vec_env
的用法示例。
在下文中一共展示了vec_env.VecNormalize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_stable_baselines
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def load_stable_baselines(cls):
def f(root_dir, env, env_name, index, transparent_params):
denv = FakeSingleSpacesVec(env, agent_id=index)
pylog.info(f"Loading Stable Baselines policy for '{cls}' from '{root_dir}'")
model = load_backward_compatible_model(cls, root_dir, denv)
try:
vec_normalize = load_vec_normalize(root_dir, denv)
model = NormalizeModel(model, vec_normalize)
except FileNotFoundError:
# No saved VecNormalize, must have not trained with normalization.
pass
return model
return f
示例2: save_stable_model
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def save_stable_model(
output_dir: str, model: BaseRLModel, vec_normalize: Optional[VecNormalize] = None,
) -> None:
"""Serialize policy.
Load later with `load_policy(..., policy_path=output_dir)`.
Args:
output_dir: Path to the save directory.
policy: The stable baselines policy.
vec_normalize: Optionally, a VecNormalize to save statistics for.
`load_policy` automatically applies `NormalizePolicy` wrapper
when loading.
"""
os.makedirs(output_dir, exist_ok=True)
model.save(os.path.join(output_dir, "model.pkl"))
if vec_normalize is not None:
with open(os.path.join(output_dir, "vec_normalize.pkl"), "wb") as f:
pickle.dump(vec_normalize, f)
tf.logging.info("Saved policy to %s", output_dir)
示例3: sample
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def sample(self, batch_size: int, env: Optional[VecNormalize] = None, **_kwargs):
"""
Sample a batch of experiences.
:param batch_size: (int) How many transitions to sample.
:param env: (Optional[VecNormalize]) associated gym VecEnv
to normalize the observations/rewards when sampling
:return:
- obs_batch: (np.ndarray) batch of observations
- act_batch: (numpy float) batch of actions executed given obs_batch
- rew_batch: (numpy float) rewards received as results of executing act_batch
- next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch
- done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode
and 0 otherwise.
"""
idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)]
return self._encode_sample(idxes, env=env)
示例4: makeEnv
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def makeEnv(cls, args, env_kwargs=None, load_path_normalise=None):
# Even though DeepQ is single core only, we need to use the pipe system to work
if env_kwargs is not None and env_kwargs.get("use_srl", False):
srl_model = MultiprocessSRLModel(1, args.env, env_kwargs)
env_kwargs["state_dim"] = srl_model.state_dim
env_kwargs["srl_pipe"] = srl_model.pipe
envs = DummyVecEnv([makeEnv(args.env, args.seed, 0, args.log_dir, env_kwargs=env_kwargs)])
envs = VecFrameStack(envs, args.num_stack)
if args.srl_model != "raw_pixels":
printYellow("Using MLP policy because working on state representation")
envs = VecNormalize(envs, norm_obs=True, norm_reward=False)
envs = loadRunningAverage(envs, load_path_normalise=load_path_normalise)
return envs
示例5: __init__
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def __init__(
self,
model: stable_baselines.common.base_class.BaseRLModel,
vec_normalize: vec_env.VecNormalize,
):
super().__init__(model=model)
self.vec_normalize = vec_normalize
示例6: load_vec_normalize
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def load_vec_normalize(root_dir: str, venv: vec_env.VecEnv) -> vec_env.VecNormalize:
try:
normalize_path = os.path.join(root_dir, "vec_normalize.pkl")
vec_normalize = vec_env.VecNormalize.load(normalize_path, venv)
vec_normalize.training = False
pylog.info(f"Loaded normalization statistics from '{normalize_path}'")
return vec_normalize
except FileNotFoundError:
pass
# Could not find vec_normalize.pkl: try loading old-style vec normalize.
vec_normalize = vec_env.VecNormalize(venv, training=False)
vec_normalize.load_running_average(root_dir)
pylog.info(f"Loaded normalization statistics from '{root_dir}'")
return vec_normalize
示例7: __init__
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def __init__(self, policy: BasePolicy, vec_normalize: VecNormalize):
super().__init__(
policy.sess,
policy.ob_space,
policy.ac_space,
policy.n_env,
policy.n_steps,
policy.n_batch,
)
self._policy = policy
self.vec_normalize = vec_normalize
示例8: _reward_fn_normalize_inputs
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def _reward_fn_normalize_inputs(
obs: np.ndarray,
acts: np.ndarray,
next_obs: np.ndarray,
dones: np.ndarray,
*,
reward_fn: RewardFn,
vec_normalize: vec_env.VecNormalize,
norm_reward: bool = True,
) -> np.ndarray:
"""Combine with `functools.partial` to create an input-normalizing RewardFn.
Args:
reward_fn: The reward function that normalized inputs are evaluated on.
vec_normalize: Instance of VecNormalize used to normalize inputs and
rewards.
norm_reward: If True, then also normalize reward before returning.
Returns:
The possibly normalized reward.
"""
norm_obs = vec_normalize.normalize_obs(obs)
norm_next_obs = vec_normalize.normalize_obs(next_obs)
rew = reward_fn(norm_obs, acts, norm_next_obs, dones)
if norm_reward:
rew = vec_normalize.normalize_reward(rew)
return rew
示例9: _normalize_obs
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def _normalize_obs(obs: np.ndarray,
env: Optional[VecNormalize] = None) -> np.ndarray:
"""
Helper for normalizing the observation.
"""
if env is not None:
return env.normalize_obs(obs)
return obs
示例10: _normalize_reward
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def _normalize_reward(reward: np.ndarray,
env: Optional[VecNormalize] = None) -> np.ndarray:
"""
Helper for normalizing the reward.
"""
if env is not None:
return env.normalize_reward(reward)
return reward
示例11: _encode_sample
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def _encode_sample(self, idxes: Union[List[int], np.ndarray], env: Optional[VecNormalize] = None):
obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], []
for i in idxes:
data = self._storage[i]
obs_t, action, reward, obs_tp1, done = data
obses_t.append(np.array(obs_t, copy=False))
actions.append(np.array(action, copy=False))
rewards.append(reward)
obses_tp1.append(np.array(obs_tp1, copy=False))
dones.append(done)
return (self._normalize_obs(np.array(obses_t), env),
np.array(actions),
self._normalize_reward(np.array(rewards), env),
self._normalize_obs(np.array(obses_tp1), env),
np.array(dones))
示例12: load_train_env
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def load_train_env(ns, state_collector, robot_radius, rew_fnc, num_stacks,
stack_offset, debug, task_mode, rl_mode, policy, disc_action_space, normalize):
# Choosing environment wrapper according to the policy
if policy == "CnnPolicy" or policy == "CnnLnLstmPolicy" or policy == "CnnLstmPolicy":
if disc_action_space:
env_temp = RosEnvDiscImg
else:
env_temp = RosEnvContImg
elif policy in ["CNN1DPolicy", "CNN1DPolicy2", "CNN1DPolicy3"]:
if disc_action_space:
env_temp = RosEnvDiscRawScanPrepWp
else:
env_temp = RosEnvContRawScanPrepWp
elif policy == "CNN1DPolicy_multi_input":
if disc_action_space:
env_temp = RosEnvDiscRaw
else:
env_temp = RosEnvContRaw
elif policy == "CnnPolicy_multi_input_vel" or policy == "CnnPolicy_multi_input_vel2":
if disc_action_space:
env_temp = RosEnvDiscImgVel
else:
env_temp = RosEnvContImgVel
env_raw = DummyVecEnv([lambda: env_temp(ns, state_collector, stack_offset, num_stacks, robot_radius, rew_fnc, debug, rl_mode, task_mode)])
if normalize:
env = VecNormalize(env_raw, training=True, norm_obs=True, norm_reward=False, clip_obs=100.0, clip_reward=10.0,
gamma=0.99, epsilon=1e-08)
else:
env = env_raw
# Stack of data?
if num_stacks > 1:
env = VecFrameStack(env, n_stack=num_stacks, n_offset=stack_offset)
return env
示例13: load_train_env
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def load_train_env(num_envs, robot_radius, rew_fnc, num_stacks, stack_offset, debug, task_mode, policy, disc_action_space, normalize):
# Choosing environment wrapper according to the policy
if policy == "CnnPolicy" or policy == "CnnLnLstmPolicy" or policy == "CnnLstmPolicy":
if disc_action_space:
env_temp = RosEnvDiscImg
else:
env_temp = RosEnvContImg
elif policy == "CNN1DPolicy":
if disc_action_space:
env_temp = RosEnvDiscRawScanPrepWp
else:
env_temp = RosEnvContRawScanPrepWp
elif policy == "CNN1DPolicy_multi_input":
if disc_action_space:
env_temp = RosEnvDiscRaw
else:
env_temp = RosEnvContRaw
elif policy == "CnnPolicy_multi_input_vel" or policy == "CnnPolicy_multi_input_vel2":
if disc_action_space:
env_temp = RosEnvDiscImgVel
else:
env_temp = RosEnvContImgVel
env = SubprocVecEnv([lambda k=k: Monitor(env_temp("sim%d" % (k+1), StateCollector("sim%s"%(k+1), "train") , stack_offset, num_stacks, robot_radius, rew_fnc, debug, "train", task_mode), '%s/%s/sim_%d'%(path_to_models, agent_name, k+1), allow_early_resets=True) for k in range(num_envs)])
# Normalizing?
if normalize:
env = VecNormalize(env, training=True, norm_obs=True, norm_reward=False, clip_obs=100.0, clip_reward=10.0,
gamma=0.99, epsilon=1e-08)
else:
env = env
# Stack of data?
if num_stacks > 1:
env = VecFrameStack(env, n_stack=num_stacks, n_offset=stack_offset)
return env
示例14: get_original_obs
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def get_original_obs(self):
"""
Hack to use VecNormalize
:return: (numpy float)
"""
return self.venv.get_original_obs()
示例15: saveRunningAverage
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import VecNormalize [as 別名]
def saveRunningAverage(self, path):
"""
Hack to use VecNormalize
:param path: (str) path to log dir
"""
self.venv.save_running_average(path)