當前位置: 首頁>>代碼示例>>Python>>正文


Python vec_env.SubprocVecEnv方法代碼示例

本文整理匯總了Python中stable_baselines.common.vec_env.SubprocVecEnv方法的典型用法代碼示例。如果您正苦於以下問題:Python vec_env.SubprocVecEnv方法的具體用法?Python vec_env.SubprocVecEnv怎麽用?Python vec_env.SubprocVecEnv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在stable_baselines.common.vec_env的用法示例。


在下文中一共展示了vec_env.SubprocVecEnv方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_subproc_start_method

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def test_subproc_start_method():
    start_methods = [None]
    # Only test thread-safe methods. Others may deadlock tests! (gh/428)
    safe_methods = {'forkserver', 'spawn'}
    available_methods = multiprocessing.get_all_start_methods()
    start_methods += list(safe_methods.intersection(available_methods))
    space = gym.spaces.Discrete(2)

    def obs_assert(obs):
        return check_vecenv_obs(obs, space)

    for start_method in start_methods:
        vec_env_class = functools.partial(SubprocVecEnv, start_method=start_method)
        check_vecenv_spaces(vec_env_class, space, obs_assert)

    with pytest.raises(ValueError, match="cannot find context for 'illegal_method'"):
        vec_env_class = functools.partial(SubprocVecEnv, start_method='illegal_method')
        check_vecenv_spaces(vec_env_class, space, obs_assert) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:20,代碼來源:test_vec_envs.py

示例2: test_make_vec_env

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def test_make_vec_env(env_id, n_envs, vec_env_cls, wrapper_class):
    env = make_vec_env(env_id, n_envs, vec_env_cls=vec_env_cls,
                       wrapper_class=wrapper_class, monitor_dir=None, seed=0)

    assert env.num_envs == n_envs

    if vec_env_cls is None:
        assert isinstance(env, DummyVecEnv)
        if wrapper_class is not None:
            assert isinstance(env.envs[0], wrapper_class)
        else:
            assert isinstance(env.envs[0], Monitor)
    else:
        assert isinstance(env, SubprocVecEnv)
    # Kill subprocesses
    env.close() 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:18,代碼來源:test_utils.py

示例3: load_stable_baselines_env

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def load_stable_baselines_env(cfg_path, vector_length, mp, n_stack, number_maps, action_frame_repeat,
                              scaled_resolution):
    env_fn = lambda: MazeExplorer.load_vizdoom_env(cfg_path, number_maps, action_frame_repeat, scaled_resolution)

    if mp:
        env = SubprocVecEnv([env_fn for _ in range(vector_length)])
    else:
        env = DummyVecEnv([env_fn for _ in range(vector_length)])

    if n_stack > 0:
        env = VecFrameStack(env, n_stack=n_stack)

    return env 
開發者ID:microsoft,項目名稱:MazeExplorer,代碼行數:15,代碼來源:evaluator.py

示例4: make_atari_env

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def make_atari_env(env_id, num_env, seed, wrapper_kwargs=None,
                   start_index=0, allow_early_resets=True,
                   start_method=None, use_subprocess=False):
    """
    Create a wrapped, monitored VecEnv for Atari.

    :param env_id: (str) the environment ID
    :param num_env: (int) the number of environment you wish to have in subprocesses
    :param seed: (int) the initial seed for RNG
    :param wrapper_kwargs: (dict) the parameters for wrap_deepmind function
    :param start_index: (int) start rank index
    :param allow_early_resets: (bool) allows early reset of the environment
    :param start_method: (str) method used to start the subprocesses.
        See SubprocVecEnv doc for more information
    :param use_subprocess: (bool) Whether to use `SubprocVecEnv` or `DummyVecEnv` when
        `num_env` > 1, `DummyVecEnv` is usually faster. Default: False
    :return: (VecEnv) The atari environment
    """
    if wrapper_kwargs is None:
        wrapper_kwargs = {}

    def make_env(rank):
        def _thunk():
            env = make_atari(env_id)
            env.seed(seed + rank)
            env = Monitor(env, logger.get_dir() and os.path.join(logger.get_dir(), str(rank)),
                          allow_early_resets=allow_early_resets)
            return wrap_deepmind(env, **wrapper_kwargs)
        return _thunk
    set_global_seeds(seed)

    # When using one environment, no need to start subprocesses
    if num_env == 1 or not use_subprocess:
        return DummyVecEnv([make_env(i + start_index) for i in range(num_env)])

    return SubprocVecEnv([make_env(i + start_index) for i in range(num_env)],
                         start_method=start_method) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:39,代碼來源:cmd_util.py

示例5: test_lstm_train

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def test_lstm_train():
    """Test that LSTM models are able to achieve >=150 (out of 500) reward on CartPoleNoVelEnv.

    This environment requires memory to perform well in."""
    def make_env(i):
        env = CartPoleNoVelEnv()
        env = TimeLimit(env, max_episode_steps=500)
        env = bench.Monitor(env, None, allow_early_resets=True)
        env.seed(i)
        return env

    env = SubprocVecEnv([lambda: make_env(i) for i in range(NUM_ENVS)])
    env = VecNormalize(env)
    model = PPO2(MlpLstmPolicy, env, n_steps=128, nminibatches=NUM_ENVS, lam=0.95, gamma=0.99,
                 noptepochs=10, ent_coef=0.0, learning_rate=3e-4, cliprange=0.2, verbose=1)

    eprewmeans = []
    def reward_callback(local, _):
        nonlocal eprewmeans
        eprewmeans.append(safe_mean([ep_info['r'] for ep_info in local['ep_info_buf']]))

    model.learn(total_timesteps=100000, callback=reward_callback)

    # Maximum episode reward is 500.
    # In CartPole-v1, a non-recurrent policy can easily get >= 450.
    # In CartPoleNoVelEnv, a non-recurrent policy doesn't get more than ~50.
    # LSTM policies can reach above 400, but it varies a lot between runs; consistently get >=150.
    # See PR #244 for more detailed benchmarks.

    average_reward = sum(eprewmeans[-NUM_EPISODES_FOR_SCORE:]) / NUM_EPISODES_FOR_SCORE
    assert average_reward >= 150, "Mean reward below 150; per-episode rewards {}".format(average_reward) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:33,代碼來源:test_lstm_policy.py

示例6: load_train_env

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def load_train_env(num_envs, robot_radius, rew_fnc, num_stacks, stack_offset, debug, task_mode, policy, disc_action_space, normalize):
    # Choosing environment wrapper according to the policy
    if policy == "CnnPolicy" or policy == "CnnLnLstmPolicy" or policy == "CnnLstmPolicy":
        if disc_action_space:
            env_temp = RosEnvDiscImg
        else:
            env_temp = RosEnvContImg
    elif policy == "CNN1DPolicy":
        if disc_action_space:
            env_temp = RosEnvDiscRawScanPrepWp
        else:
            env_temp = RosEnvContRawScanPrepWp
    elif policy == "CNN1DPolicy_multi_input":
        if disc_action_space:
            env_temp = RosEnvDiscRaw
        else:
            env_temp = RosEnvContRaw
    elif policy == "CnnPolicy_multi_input_vel" or policy == "CnnPolicy_multi_input_vel2":
        if disc_action_space:
            env_temp = RosEnvDiscImgVel
        else:
            env_temp = RosEnvContImgVel

    env = SubprocVecEnv([lambda k=k: Monitor(env_temp("sim%d" % (k+1), StateCollector("sim%s"%(k+1), "train") , stack_offset, num_stacks, robot_radius, rew_fnc, debug, "train", task_mode), '%s/%s/sim_%d'%(path_to_models, agent_name, k+1), allow_early_resets=True) for k in range(num_envs)])

    # Normalizing?
    if normalize:
        env = VecNormalize(env, training=True, norm_obs=True, norm_reward=False, clip_obs=100.0, clip_reward=10.0,
                           gamma=0.99, epsilon=1e-08)
    else:
        env = env

    # Stack of data?
    if num_stacks > 1:
        env = VecFrameStack(env, n_stack=num_stacks, n_offset=stack_offset)

    return env 
開發者ID:RGring,項目名稱:drl_local_planner_ros_stable_baselines,代碼行數:39,代碼來源:train_ppo.py

示例7: main

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def main(args):

	start = time.time()

	env_id = 'fwmav_maneuver-v0'
	env = DummyVecEnv([make_env(env_id, 0)])
	# env = SubprocVecEnv([make_env(env_id, i) for i in range(args.n_cpu)])

	n_actions = env.action_space.shape[-1]
	param_noise = None
	action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))

	model = DDPG(
			policy = MyDDPGPolicy,
			env = env,
			gamma = 1.0,
			nb_train_steps=5000,
			nb_rollout_steps=10000,
			nb_eval_steps=10000,
			param_noise=param_noise,
			action_noise=action_noise,
			tau=0.003,
			batch_size=256,
			observation_range=(-np.inf, np.inf),
			actor_lr=0.0001,
			critic_lr=0.001,
			reward_scale=0.05,
			memory_limit=10000000,
			verbose=1,
	)

	model.learn(total_timesteps=args.time_step)
	model.save(args.model_path)

	end = time.time()
	print("Time used: ", end - start) 
開發者ID:purdue-biorobotics,項目名稱:flappy,代碼行數:38,代碼來源:train_maneuver_DDPG.py

示例8: main

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def main(args):

	start = time.time()

	env_id = 'fwmav_hover-v0'
	env = DummyVecEnv([make_env(env_id, 0)])
	# env = SubprocVecEnv([make_env(env_id, i) for i in range(args.n_cpu)])

	n_actions = env.action_space.shape[-1]
	param_noise = None
	action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))

	model = DDPG(
			policy = MyDDPGPolicy,
			env = env,
			gamma = 1.0,
			nb_train_steps=5000,
			nb_rollout_steps=10000,
			nb_eval_steps=10000,
			param_noise=param_noise,
			action_noise=action_noise,
			tau=0.003,
			batch_size=256,
			observation_range=(-np.inf, np.inf),
			actor_lr=0.0001,
			critic_lr=0.001,
			reward_scale=0.05,
			memory_limit=10000000,
			verbose=1,
	)

	model.learn(total_timesteps=args.time_step)
	model.save(args.model_path)

	end = time.time()
	print("Time used: ", end - start) 
開發者ID:purdue-biorobotics,項目名稱:flappy,代碼行數:38,代碼來源:train_DDPG.py

示例9: main

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def main(args):

    try:
        model_cls = getattr(importlib.import_module(
            'stable_baselines'), args.model_type)
    except AttributeError:
        print(args.model_type, "Error: wrong model type")
        return

    try:
        policy_cls = getattr(importlib.import_module(
            'stable_baselines.common.policies'), args.policy_type)
    except AttributeError:
        print(args.policy_type, "Error: wrong policy type")
        return

    start = time.time()

    env_id = 'fwmav_hover-v0'
    # env = DummyVecEnv([make_env(env_id, 1)])
    env = SubprocVecEnv([make_env(env_id, i) for i in range(args.n_cpu)])

    model = model_cls(policy_cls, env, verbose=0)
    model.learn(total_timesteps=args.time_step)
    model.save(args.model_path)

    end = time.time()
    print("Time used: ", end - start) 
開發者ID:purdue-biorobotics,項目名稱:flappy,代碼行數:30,代碼來源:train.py

示例10: createEnvs

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def createEnvs(args, allow_early_resets=False, env_kwargs=None, load_path_normalise=None):
    """
    :param args: (argparse.Namespace Object)
    :param allow_early_resets: (bool) Allow reset before the enviroment is done, usually used in ES to halt the envs
    :param env_kwargs: (dict) The extra arguments for the environment
    :param load_path_normalise: (str) the path to loading the rolling average, None if not available or wanted.
    :return: (Gym VecEnv)
    """
    # imported here to prevent cyclic imports
    from environments.registry import registered_env
    from state_representation.registry import registered_srl, SRLType

    assert not (registered_env[args.env][3] is ThreadingType.NONE and args.num_cpu != 1), \
        "Error: cannot have more than 1 CPU for the environment {}".format(args.env)

    if env_kwargs is not None and registered_srl[args.srl_model][0] == SRLType.SRL:
        srl_model = MultiprocessSRLModel(args.num_cpu, args.env, env_kwargs)
        env_kwargs["state_dim"] = srl_model.state_dim
        env_kwargs["srl_pipe"] = srl_model.pipe
    envs = [makeEnv(args.env, args.seed, i, args.log_dir, allow_early_resets=allow_early_resets, env_kwargs=env_kwargs)
            for i in range(args.num_cpu)]

    if len(envs) == 1:
        # No need for subprocesses when having only one env
        envs = DummyVecEnv(envs)
    else:
        envs = SubprocVecEnv(envs)

    envs = VecFrameStack(envs, args.num_stack)

    if args.srl_model != "raw_pixels":
        printYellow("Using MLP policy because working on state representation")
        envs = VecNormalize(envs, norm_obs=True, norm_reward=False)
        envs = loadRunningAverage(envs, load_path_normalise=load_path_normalise)

    return envs 
開發者ID:araffin,項目名稱:robotics-rl-srl,代碼行數:38,代碼來源:utils.py

示例11: run_model_stablebaseline

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def run_model_stablebaseline(flow_params,
                             num_cpus=1,
                             rollout_size=50,
                             num_steps=50):
    """Run the model for num_steps if provided.

    Parameters
    ----------
    flow_params : dict
        flow-specific parameters
    num_cpus : int
        number of CPUs used during training
    rollout_size : int
        length of a single rollout
    num_steps : int
        total number of training steps
    The total rollout length is rollout_size.

    Returns
    -------
    stable_baselines.*
        the trained model
    """
    from stable_baselines.common.vec_env import DummyVecEnv, SubprocVecEnv
    from stable_baselines import PPO2

    if num_cpus == 1:
        constructor = env_constructor(params=flow_params, version=0)()
        # The algorithms require a vectorized environment to run
        env = DummyVecEnv([lambda: constructor])
    else:
        env = SubprocVecEnv([env_constructor(params=flow_params, version=i)
                             for i in range(num_cpus)])

    train_model = PPO2('MlpPolicy', env, verbose=1, n_steps=rollout_size)
    train_model.learn(total_timesteps=num_steps)
    return train_model 
開發者ID:flow-project,項目名稱:flow,代碼行數:39,代碼來源:train.py

示例12: train

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def train(self,
              n_epochs: int = 10,
              save_every: int = 1,
              test_trained_model: bool = True,
              render_test_env: bool = False,
              render_report: bool = True,
              save_report: bool = False):
        train_provider, test_provider = self.data_provider.split_data_train_test(self.train_split_percentage)

        del test_provider

        train_env = SubprocVecEnv([make_env(train_provider, i) for i in range(self.n_envs)])

        model_params = self.get_model_params()

        model = self.Model(self.Policy,
                           train_env,
                           verbose=self.model_verbose,
                           nminibatches=self.n_minibatches,
                           tensorboard_log=self.tensorboard_path,
                           **model_params)

        self.logger.info(f'Training for {n_epochs} epochs')

        steps_per_epoch = len(train_provider.data_frame)

        for model_epoch in range(0, n_epochs):
            self.logger.info(f'[{model_epoch}] Training for: {steps_per_epoch} time steps')

            model.learn(total_timesteps=steps_per_epoch)

            if model_epoch % save_every == 0:
                model_path = path.join('data', 'agents', f'{self.study_name}__{model_epoch}.pkl')
                model.save(model_path)

                if test_trained_model:
                    self.test(model_epoch,
                              render_env=render_test_env,
                              render_report=render_report,
                              save_report=save_report)

        self.logger.info(f'Trained {n_epochs} models') 
開發者ID:notadamking,項目名稱:RLTrader,代碼行數:44,代碼來源:RLTrader.py

示例13: make_vec_env

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def make_vec_env(env_id, n_envs=1, seed=None, start_index=0,
                 monitor_dir=None, wrapper_class=None,
                 env_kwargs=None, vec_env_cls=None, vec_env_kwargs=None):
    """
    Create a wrapped, monitored `VecEnv`.
    By default it uses a `DummyVecEnv` which is usually faster
    than a `SubprocVecEnv`.

    :param env_id: (str or Type[gym.Env]) the environment ID or the environment class
    :param n_envs: (int) the number of environments you wish to have in parallel
    :param seed: (int) the initial seed for the random number generator
    :param start_index: (int) start rank index
    :param monitor_dir: (str) Path to a folder where the monitor files will be saved.
        If None, no file will be written, however, the env will still be wrapped
        in a Monitor wrapper to provide additional information about training.
    :param wrapper_class: (gym.Wrapper or callable) Additional wrapper to use on the environment.
        This can also be a function with single argument that wraps the environment in many things.
    :param env_kwargs: (dict) Optional keyword argument to pass to the env constructor
    :param vec_env_cls: (Type[VecEnv]) A custom `VecEnv` class constructor. Default: None.
    :param vec_env_kwargs: (dict) Keyword arguments to pass to the `VecEnv` class constructor.
    :return: (VecEnv) The wrapped environment
    """
    env_kwargs = {} if env_kwargs is None else env_kwargs
    vec_env_kwargs = {} if vec_env_kwargs is None else vec_env_kwargs

    def make_env(rank):
        def _init():
            if isinstance(env_id, str):
                env = gym.make(env_id)
                if len(env_kwargs) > 0:
                    warnings.warn("No environment class was passed (only an env ID) so `env_kwargs` will be ignored")
            else:
                env = env_id(**env_kwargs)
            if seed is not None:
                env.seed(seed + rank)
                env.action_space.seed(seed + rank)
            # Wrap the env in a Monitor wrapper
            # to have additional training information
            monitor_path = os.path.join(monitor_dir, str(rank)) if monitor_dir is not None else None
            # Create the monitor folder if needed
            if monitor_path is not None:
                os.makedirs(monitor_dir, exist_ok=True)
            env = Monitor(env, filename=monitor_path)
            # Optionally, wrap the environment with the provided wrapper
            if wrapper_class is not None:
                env = wrapper_class(env)
            return env
        return _init

    # No custom VecEnv is passed
    if vec_env_cls is None:
        # Default: use a DummyVecEnv
        vec_env_cls = DummyVecEnv

    return vec_env_cls([make_env(i + start_index) for i in range(n_envs)], **vec_env_kwargs) 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:57,代碼來源:cmd_util.py

示例14: create_env

# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import SubprocVecEnv [as 別名]
def create_env(n_envs, eval_env=False):
        """
        Create the environment and wrap it if necessary
        :param n_envs: (int)
        :param eval_env: (bool) Whether is it an environment used for evaluation or not
        :return: (Union[gym.Env, VecEnv])
        :return: (gym.Env)
        """
        global hyperparams
        global env_kwargs

        # Do not log eval env (issue with writing the same file)
        log_dir = None if eval_env else save_path

        if is_atari:
            if args.verbose > 0:
                print("Using Atari wrapper")
            env = make_atari_env(env_id, num_env=n_envs, seed=args.seed)
            # Frame-stacking with 4 frames
            env = VecFrameStack(env, n_stack=4)
        elif algo_ in ['dqn', 'ddpg']:
            if hyperparams.get('normalize', False):
                print("WARNING: normalization not supported yet for DDPG/DQN")
            env = gym.make(env_id, **env_kwargs)
            env.seed(args.seed)
            if env_wrapper is not None:
                env = env_wrapper(env)
        else:
            if n_envs == 1:
                env = DummyVecEnv([make_env(env_id, 0, args.seed, wrapper_class=env_wrapper, log_dir=log_dir, env_kwargs=env_kwargs)])
            else:
                # env = SubprocVecEnv([make_env(env_id, i, args.seed) for i in range(n_envs)])
                # On most env, SubprocVecEnv does not help and is quite memory hungry
                env = DummyVecEnv([make_env(env_id, i, args.seed, log_dir=log_dir,
                                            wrapper_class=env_wrapper, env_kwargs=env_kwargs) for i in range(n_envs)])
            if normalize:
                if args.verbose > 0:
                    if len(normalize_kwargs) > 0:
                        print("Normalization activated: {}".format(normalize_kwargs))
                    else:
                        print("Normalizing input and reward")
                env = VecNormalize(env, **normalize_kwargs)
        # Optional Frame-stacking
        if hyperparams.get('frame_stack', False):
            n_stack = hyperparams['frame_stack']
            env = VecFrameStack(env, n_stack)
            print("Stacking {} frames".format(n_stack))
            del hyperparams['frame_stack']
        if args.algo == 'her':
            # Wrap the env if need to flatten the dict obs
            if isinstance(env, VecEnv):
                env = _UnvecWrapper(env)
            env = HERGoalEnvWrapper(env)
        return env 
開發者ID:araffin,項目名稱:rl-baselines-zoo,代碼行數:56,代碼來源:train.py


注:本文中的stable_baselines.common.vec_env.SubprocVecEnv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。