本文整理匯總了Python中stable_baselines.common.vec_env.DummyVecEnv方法的典型用法代碼示例。如果您正苦於以下問題:Python vec_env.DummyVecEnv方法的具體用法?Python vec_env.DummyVecEnv怎麽用?Python vec_env.DummyVecEnv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類stable_baselines.common.vec_env
的用法示例。
在下文中一共展示了vec_env.DummyVecEnv方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: initialize_optuna
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def initialize_optuna(self):
try:
train_env = DummyVecEnv([lambda: TradingEnv(self.data_provider)])
model = self.Model(self.Policy, train_env, nminibatches=1)
strategy = self.Reward_Strategy()
self.study_name = f'{model.__class__.__name__}__{model.act_model.__class__.__name__}__{strategy.__class__.__name__}'
except:
self.study_name = f'UnknownModel__UnknownPolicy__UnknownStrategy'
self.optuna_study = optuna.create_study(
study_name=self.study_name, storage=self.params_db_path, load_if_exists=True)
self.logger.debug('Initialized Optuna:')
try:
self.logger.debug(
f'Best reward in ({len(self.optuna_study.trials)}) trials: {self.optuna_study.best_value}')
except:
self.logger.debug('No trials have been finished yet.')
示例2: test_rollout_stats
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_rollout_stats():
"""Applying `ObsRewIncrementWrapper` halves the reward mean.
`rollout_stats` should reflect this.
"""
env = gym.make("CartPole-v1")
env = bench.Monitor(env, None)
env = ObsRewHalveWrapper(env)
venv = vec_env.DummyVecEnv([lambda: env])
with serialize.load_policy("zero", "UNUSED", venv) as policy:
trajs = rollout.generate_trajectories(policy, venv, rollout.min_episodes(10))
s = rollout.rollout_stats(trajs)
np.testing.assert_allclose(s["return_mean"], s["monitor_return_mean"] / 2)
np.testing.assert_allclose(s["return_std"], s["monitor_return_std"] / 2)
np.testing.assert_allclose(s["return_min"], s["monitor_return_min"] / 2)
np.testing.assert_allclose(s["return_max"], s["monitor_return_max"] / 2)
示例3: test_unwrap_traj
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_unwrap_traj():
"""Check that unwrap_traj reverses `ObsRewIncrementWrapper`.
Also check that unwrapping twice is a no-op.
"""
env = gym.make("CartPole-v1")
env = wrappers.RolloutInfoWrapper(env)
env = ObsRewHalveWrapper(env)
venv = vec_env.DummyVecEnv([lambda: env])
with serialize.load_policy("zero", "UNUSED", venv) as policy:
trajs = rollout.generate_trajectories(policy, venv, rollout.min_episodes(10))
trajs_unwrapped = [rollout.unwrap_traj(t) for t in trajs]
trajs_unwrapped_twice = [rollout.unwrap_traj(t) for t in trajs_unwrapped]
for t, t_unwrapped in zip(trajs, trajs_unwrapped):
np.testing.assert_allclose(t.acts, t_unwrapped.acts)
np.testing.assert_allclose(t.obs, t_unwrapped.obs / 2)
np.testing.assert_allclose(t.rews, t_unwrapped.rews / 2)
for t1, t2 in zip(trajs_unwrapped, trajs_unwrapped_twice):
np.testing.assert_equal(t1.acts, t2.acts)
np.testing.assert_equal(t1.obs, t2.obs)
np.testing.assert_equal(t1.rews, t2.rews)
示例4: test_identity
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_identity(model_name):
"""
Test if the algorithm (with a given policy)
can learn an identity transformation (i.e. return observation as an action)
:param model_name: (str) Name of the RL model
"""
env = DummyVecEnv([lambda: IdentityEnv(10)])
model = LEARN_FUNC_DICT[model_name](env)
evaluate_policy(model, env, n_eval_episodes=20, reward_threshold=90)
obs = env.reset()
assert model.action_probability(obs).shape == (1, 10), "Error: action_probability not returning correct shape"
action = env.action_space.sample()
action_prob = model.action_probability(obs, actions=action)
assert np.prod(action_prob.shape) == 1, "Error: not scalar probability"
action_logprob = model.action_probability(obs, actions=action, logp=True)
assert np.allclose(action_prob, np.exp(action_logprob)), (action_prob, action_logprob)
# Free memory
del model, env
示例5: test_model_multiple_learn_no_reset
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_model_multiple_learn_no_reset(model_class):
"""Check that when we call learn multiple times, we don't unnecessarily
reset the environment.
"""
if model_class is ACER:
def make_env():
return IdentityEnv(ep_length=1e10, dim=2)
else:
def make_env():
return IdentityEnvBox(ep_length=1e10)
env = make_env()
venv = DummyVecEnv([lambda: env])
model = model_class(policy="MlpPolicy", env=venv)
_check_reset_count(model, env)
# Try again following a `set_env`.
env = make_env()
venv = DummyVecEnv([lambda: env])
assert env.num_resets == 0
model.set_env(venv)
_check_reset_count(model, env)
示例6: test_vecenv_wrapper_getattr
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_vecenv_wrapper_getattr():
def make_env():
return CustomGymEnv(gym.spaces.Box(low=np.zeros(2), high=np.ones(2)))
vec_env = DummyVecEnv([make_env for _ in range(N_ENVS)])
wrapped = CustomWrapperA(CustomWrapperBB(vec_env))
assert wrapped.var_a == 'a'
assert wrapped.var_b == 'b'
assert wrapped.var_bb == 'bb'
assert wrapped.func_b() == 'b'
assert wrapped.name_test() == CustomWrapperBB
double_wrapped = CustomWrapperA(CustomWrapperB(wrapped))
dummy = double_wrapped.var_a # should not raise as it is directly defined here
with pytest.raises(AttributeError): # should raise due to ambiguity
dummy = double_wrapped.var_b
with pytest.raises(AttributeError): # should raise as does not exist
dummy = double_wrapped.nonexistent_attribute
del dummy # keep linter happy
示例7: test_identity_multidiscrete
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_identity_multidiscrete(model_class):
"""
Test if the algorithm (with a given policy)
can learn an identity transformation (i.e. return observation as an action)
with a multidiscrete action space
:param model_class: (BaseRLModel) A RL Model
"""
env = DummyVecEnv([lambda: IdentityEnvMultiDiscrete(10)])
model = model_class("MlpPolicy", env)
model.learn(total_timesteps=1000)
evaluate_policy(model, env, n_eval_episodes=5)
obs = env.reset()
assert np.array(model.action_probability(obs)).shape == (2, 1, 10), \
"Error: action_probability not returning correct shape"
assert np.prod(model.action_probability(obs, actions=env.action_space.sample()).shape) == 1, \
"Error: not scalar probability"
示例8: test_make_vec_env
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_make_vec_env(env_id, n_envs, vec_env_cls, wrapper_class):
env = make_vec_env(env_id, n_envs, vec_env_cls=vec_env_cls,
wrapper_class=wrapper_class, monitor_dir=None, seed=0)
assert env.num_envs == n_envs
if vec_env_cls is None:
assert isinstance(env, DummyVecEnv)
if wrapper_class is not None:
assert isinstance(env.envs[0], wrapper_class)
else:
assert isinstance(env.envs[0], Monitor)
else:
assert isinstance(env, SubprocVecEnv)
# Kill subprocesses
env.close()
示例9: test_custom_vec_env
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def test_custom_vec_env():
"""
Stand alone test for a special case (passing a custom VecEnv class) to avoid doubling the number of tests.
"""
monitor_dir = 'logs/test_make_vec_env/'
env = make_vec_env('CartPole-v1', n_envs=1,
monitor_dir=monitor_dir, seed=0,
vec_env_cls=SubprocVecEnv, vec_env_kwargs={'start_method': None})
assert env.num_envs == 1
assert isinstance(env, SubprocVecEnv)
assert os.path.isdir('logs/test_make_vec_env/')
# Kill subprocess
env.close()
# Cleanup folder
shutil.rmtree(monitor_dir)
# This should fail because DummyVecEnv does not have any keyword argument
with pytest.raises(TypeError):
make_vec_env('CartPole-v1', n_envs=1, vec_env_kwargs={'dummy': False})
示例10: main
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def main(args):
env_id = 'fwmav_hover-v1'
env = DummyVecEnv([make_env(env_id, 0, random_init = args.rand_init, randomize_sim = args.rand_dynamics, phantom_sensor = args.phantom_sensor)])
model = LazyModel(env.envs[0],args.model_type)
obs = env.reset()
while True:
if env.envs[0].is_sim_on == False:
env.envs[0].gui.cv.wait()
elif env.envs[0].is_sim_on:
action, _ = model.predict(obs)
obs, rewards, done, info = env.step(action)
if done:
obs = env.reset()
示例11: makeEnv
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def makeEnv(cls, args, env_kwargs=None, load_path_normalise=None):
# Even though DeepQ is single core only, we need to use the pipe system to work
if env_kwargs is not None and env_kwargs.get("use_srl", False):
srl_model = MultiprocessSRLModel(1, args.env, env_kwargs)
env_kwargs["state_dim"] = srl_model.state_dim
env_kwargs["srl_pipe"] = srl_model.pipe
envs = DummyVecEnv([makeEnv(args.env, args.seed, 0, args.log_dir, env_kwargs=env_kwargs)])
envs = VecFrameStack(envs, args.num_stack)
if args.srl_model != "raw_pixels":
printYellow("Using MLP policy because working on state representation")
envs = VecNormalize(envs, norm_obs=True, norm_reward=False)
envs = loadRunningAverage(envs, load_path_normalise=load_path_normalise)
return envs
示例12: create_simple_policy_wrapper
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def create_simple_policy_wrapper(env_name, num_envs, state_shapes):
vec_env = DummyVecEnv([lambda: gym.make(env_name) for _ in range(num_envs)])
num_actions = vec_env.action_space.n # for Discrete spaces
policies = []
for i, state_shape in enumerate(state_shapes):
constant_value = np.full(shape=vec_env.action_space.shape, fill_value=i % num_actions)
policy = _get_constant_policy(
vec_env, constant_value=constant_value, state_shape=state_shape
)
policies.append(policy)
policy_wrapper = MultiPolicyWrapper(policies=policies, num_envs=num_envs)
yield vec_env, policy_wrapper
policy_wrapper.close()
示例13: load_stable_baselines_env
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def load_stable_baselines_env(cfg_path, vector_length, mp, n_stack, number_maps, action_frame_repeat,
scaled_resolution):
env_fn = lambda: MazeExplorer.load_vizdoom_env(cfg_path, number_maps, action_frame_repeat, scaled_resolution)
if mp:
env = SubprocVecEnv([env_fn for _ in range(vector_length)])
else:
env = DummyVecEnv([env_fn for _ in range(vector_length)])
if n_stack > 0:
env = VecFrameStack(env, n_stack=n_stack)
return env
示例14: _sample_fixed_length_trajectories
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def _sample_fixed_length_trajectories(
episode_lengths: Sequence[int], min_episodes: int, **kwargs,
) -> Sequence[types.Trajectory]:
venv = vec_env.DummyVecEnv(
[functools.partial(TerminalSentinelEnv, length) for length in episode_lengths]
)
policy = RandomPolicy(venv.observation_space, venv.action_space)
sample_until = rollout.min_episodes(min_episodes)
trajectories = rollout.generate_trajectories(
policy, venv, sample_until=sample_until, **kwargs,
)
return trajectories
示例15: _make_buffering_venv
# 需要導入模塊: from stable_baselines.common import vec_env [as 別名]
# 或者: from stable_baselines.common.vec_env import DummyVecEnv [as 別名]
def _make_buffering_venv(error_on_premature_reset: bool,) -> BufferingWrapper:
venv = DummyVecEnv([_CountingEnv] * 2)
venv = BufferingWrapper(venv, error_on_premature_reset)
venv.reset()
return venv