當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.subplot方法代碼示例

本文整理匯總了Python中src.utils.subplot方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.subplot方法的具體用法?Python utils.subplot怎麽用?Python utils.subplot使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在src.utils的用法示例。


在下文中一共展示了utils.subplot方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: save_d_at_t

# 需要導入模塊: from src import utils [as 別名]
# 或者: from src.utils import subplot [as 別名]
def save_d_at_t(outputs, global_step, output_dir, metric_summary, N):
  """Save distance to goal at all time steps.
  
  Args:
    outputs        : [gt_dist_to_goal].
    global_step : number of iterations.
    output_dir     : output directory.
    metric_summary : to append scalars to summary.
    N              : number of outputs to process.

  """
  d_at_t = np.concatenate(map(lambda x: x[0][:,:,0]*1, outputs), axis=0)
  fig, axes = utils.subplot(plt, (1,1), (5,5))
  axes.plot(np.arange(d_at_t.shape[1]), np.mean(d_at_t, axis=0), 'r.')
  axes.set_xlabel('time step')
  axes.set_ylabel('dist to next goal')
  axes.grid('on')
  file_name = os.path.join(output_dir, 'dist_at_t_{:d}.png'.format(global_step))
  with fu.fopen(file_name, 'w') as f:
    fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
  file_name = os.path.join(output_dir, 'dist_at_t_{:d}.pkl'.format(global_step))
  utils.save_variables(file_name, [d_at_t], ['d_at_t'], overwrite=True)
  plt.close(fig)
  return None 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:nav_utils.py

示例2: _debug_save_map_nodes

# 需要導入模塊: from src import utils [as 別名]
# 或者: from src.utils import subplot [as 別名]
def _debug_save_map_nodes(self, seed):
    """Saves traversible space along with nodes generated on the graph. Takes
    the seed as input."""
    img_path = os.path.join(self.logdir, '{:s}_{:d}_graph.png'.format(self.building_name, seed))
    node_xyt = self.to_actual_xyt_vec(self.task.nodes)
    plt.set_cmap('jet');
    fig, ax = utils.subplot(plt, (1,1), (12,12))
    ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
    ax.set_axis_off(); ax.axis('equal');
    
    if self.room_dims is not None:
      for i, r in enumerate(self.room_dims['dims']*1):
        min_ = r[:3]*1
        max_ = r[3:]*1
        xmin, ymin, zmin = min_
        xmax, ymax, zmax = max_

        ax.plot([xmin, xmax, xmax, xmin, xmin],
                [ymin, ymin, ymax, ymax, ymin], 'g')
    ax.imshow(self.traversible, origin='lower');
    with fu.fopen(img_path, 'w') as f:
      fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:nav_env.py

示例3: _vis_readout_maps

# 需要導入模塊: from src import utils [as 別名]
# 或者: from src.utils import subplot [as 別名]
def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N):
  # outputs is [gt_map, pred_map]:
  if N >= 0:
    outputs = outputs[:N]
  N = len(outputs)

  plt.set_cmap('jet')
  fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5))
  axes = axes.ravel()[::-1].tolist()
  for i in range(N):
    gt_map, pred_map = outputs[i]
    for j in [0]:
      for k in range(gt_map.shape[4]):
        # Display something like the midpoint of the trajectory.
        id = np.int(gt_map.shape[1]/2)

        ax = axes.pop();
        ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none',
                  vmin=0., vmax=1.)
        ax.set_axis_off();
        if i == 0: ax.set_title('gt_map')

        ax = axes.pop();
        ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none',
                  vmin=0., vmax=1.)
        ax.set_axis_off();
        if i == 0: ax.set_title('pred_map')

  file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step))
  with fu.fopen(file_name, 'w') as f:
    fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
  plt.close(fig) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:34,代碼來源:cmp_summary.py

示例4: _vis

# 需要導入模塊: from src import utils [as 別名]
# 或者: from src.utils import subplot [as 別名]
def _vis(outputs, global_step, output_dir, metric_summary, N):
  # Plot the value map, goal for various maps to see what if the model is
  # learning anything useful.
  #
  # outputs is [values, goals, maps, occupancy, conf].
  #
  if N >= 0:
    outputs = outputs[:N]
  N = len(outputs)

  plt.set_cmap('jet')
  fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*5), (5,5))
  axes = axes.ravel()[::-1].tolist()
  for i in range(N):
    values, goals, maps, occupancy, conf = outputs[i]
    for j in [0]:
      for k in range(values.shape[4]):
        # Display something like the midpoint of the trajectory.
        id = np.int(values.shape[1]/2)

        ax = axes.pop();
        ax.imshow(goals[j,id,:,:,k], origin='lower', interpolation='none')
        ax.set_axis_off();
        if i == 0: ax.set_title('goal')

        ax = axes.pop();
        ax.imshow(occupancy[j,id,:,:,k], origin='lower', interpolation='none')
        ax.set_axis_off();
        if i == 0: ax.set_title('occupancy')

        ax = axes.pop();
        ax.imshow(conf[j,id,:,:,k], origin='lower', interpolation='none',
                  vmin=0., vmax=1.)
        ax.set_axis_off();
        if i == 0: ax.set_title('conf')

        ax = axes.pop();
        ax.imshow(values[j,id,:,:,k], origin='lower', interpolation='none')
        ax.set_axis_off();
        if i == 0: ax.set_title('value')

        ax = axes.pop();
        ax.imshow(maps[j,id,:,:,k], origin='lower', interpolation='none')
        ax.set_axis_off();
        if i == 0: ax.set_title('incr map')

  file_name = os.path.join(output_dir, 'value_vis_{:d}.png'.format(global_step))
  with fu.fopen(file_name, 'w') as f:
    fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
  plt.close(fig) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:52,代碼來源:cmp_summary.py

示例5: plot_trajectories

# 需要導入模塊: from src import utils [as 別名]
# 或者: from src.utils import subplot [as 別名]
def plot_trajectories(outputs, global_step, output_dir, metric_summary, N):
  """Processes the collected outputs during validation to plot the trajectories
  in the top view.
  
  Args:
    outputs        : [locs, orig_maps, goal_loc].
    global_step    : global_step.
    output_dir     : where to store results.
    metric_summary : summary object to add summaries to.
    N              : number of outputs to process.
  """
  if N >= 0:
    outputs = outputs[:N]
  N = len(outputs)

  plt.set_cmap('gray')
  fig, axes = utils.subplot(plt, (N, outputs[0][1].shape[0]), (5,5))
  axes = axes.ravel()[::-1].tolist()
  for i in range(N):
    locs, orig_maps, goal_loc = outputs[i]
    is_semantic = np.isnan(goal_loc[0,0,1])
    for j in range(orig_maps.shape[0]):
      ax = axes.pop();
      ax.plot(locs[j,0,0], locs[j,0,1], 'ys')
      # Plot one by one, so that they come in different colors.
      for k in range(goal_loc.shape[1]):
        if not is_semantic:
          ax.plot(goal_loc[j,k,0], goal_loc[j,k,1], 's')
      if False:
        ax.plot(locs[j,:,0], locs[j,:,1], 'r.', ms=3)
        ax.imshow(orig_maps[j,0,:,:,0], origin='lower')
        ax.set_axis_off();
      else:
        ax.scatter(locs[j,:,0], locs[j,:,1], c=np.arange(locs.shape[1]),
                   cmap='jet', s=10, lw=0)
        ax.imshow(orig_maps[j,0,:,:,0], origin='lower', vmin=-1.0, vmax=2.0)
        if not is_semantic:
          xymin = np.minimum(np.min(goal_loc[j,:,:], axis=0), np.min(locs[j,:,:], axis=0))
          xymax = np.maximum(np.max(goal_loc[j,:,:], axis=0), np.max(locs[j,:,:], axis=0))
        else:
          xymin = np.min(locs[j,:,:], axis=0)
          xymax = np.max(locs[j,:,:], axis=0)
        xy1 = (xymax+xymin)/2. - np.maximum(np.max(xymax-xymin), 12)
        xy2 = (xymax+xymin)/2. + np.maximum(np.max(xymax-xymin), 12)
        ax.set_xlim([xy1[0], xy2[0]])
        ax.set_ylim([xy1[1], xy2[1]])
        ax.set_axis_off()
  file_name = os.path.join(output_dir, 'trajectory_{:d}.png'.format(global_step))
  with fu.fopen(file_name, 'w') as f:
    fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
  plt.close(fig)
  return None 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:54,代碼來源:nav_utils.py

示例6: _preprocess_for_task

# 需要導入模塊: from src import utils [as 別名]
# 或者: from src.utils import subplot [as 別名]
def _preprocess_for_task(self, seed):
    if self.task is None or self.task.seed != seed:
      rng = np.random.RandomState(seed)
      origin_loc = get_graph_origin_loc(rng, self.traversible)
      self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
                            n_ori=self.task_params.n_ori)
      G = generate_graph(self.valid_fn_vec,
                                  self.task_params.step_size, self.task.n_ori,
                                  (0, 0, 0))
      gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
      self.task.gtG = gtG
      self.task.nodes = nodes
      self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
      self.task.nodes_to_id = nodes_to_id
      logging.info('Building %s, #V=%d, #E=%d', self.building_name,
                   self.task.nodes.shape[0], self.task.gtG.num_edges())

      if self.logdir is not None:
        write_traversible = cv2.applyColorMap(self.traversible.astype(np.uint8)*255, cv2.COLORMAP_JET)
        img_path = os.path.join(self.logdir,
                                '{:s}_{:d}_graph.png'.format(self.building_name,
                                                             seed))
        node_xyt = self.to_actual_xyt_vec(self.task.nodes)
        plt.set_cmap('jet');
        fig, ax = utils.subplot(plt, (1,1), (12,12))
        ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
        ax.imshow(self.traversible, origin='lower');
        ax.set_axis_off(); ax.axis('equal');
        ax.set_title('{:s}, {:d}, {:d}'.format(self.building_name,
                                               self.task.nodes.shape[0],
                                               self.task.gtG.num_edges()))
        if self.room_dims is not None:
          for i, r in enumerate(self.room_dims['dims']*1):
            min_ = r[:3]*1
            max_ = r[3:]*1
            xmin, ymin, zmin = min_
            xmax, ymax, zmax = max_

            ax.plot([xmin, xmax, xmax, xmin, xmin],
                    [ymin, ymin, ymax, ymax, ymin], 'g')
        with fu.fopen(img_path, 'w') as f:
          fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
        plt.close(fig) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:45,代碼來源:nav_env.py


注:本文中的src.utils.subplot方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。