本文整理匯總了Python中sqlalchemy.types.Numeric方法的典型用法代碼示例。如果您正苦於以下問題:Python types.Numeric方法的具體用法?Python types.Numeric怎麽用?Python types.Numeric使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sqlalchemy.types
的用法示例。
在下文中一共展示了types.Numeric方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_type
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def get_type(data_type):
type_map = {
"bytes": types.LargeBinary,
"boolean": types.Boolean,
"date": types.Date,
"datetime": types.DateTime,
"double": types.Numeric,
"text": types.String,
"keyword": types.String,
"integer": types.Integer,
"half_float": types.Float,
"geo_point": types.String,
# TODO get a solution for nested type
"nested": types.String,
# TODO get a solution for object
"object": types.BLOB,
"long": types.BigInteger,
"float": types.Float,
"ip": types.String,
}
type_ = type_map.get(data_type)
if not type_:
logger.warning(f"Unknown type found {data_type} reverting to string")
type_ = types.String
return type_
示例2: test_float_coercion
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_float_coercion(self, connection):
data_table = self.tables.data_table
for type_, result in [
(Numeric, decimal.Decimal("140.381230939")),
(Float, 140.381230939),
(Float(asdecimal=True), decimal.Decimal("140.381230939")),
(Numeric(asdecimal=False), 140.381230939),
]:
ret = connection.execute(
select([func.stddev_pop(data_table.c.data, type_=type_)])
).scalar()
eq_(round_decimal(ret, 9), result)
ret = connection.execute(
select([cast(func.stddev_pop(data_table.c.data), type_)])
).scalar()
eq_(round_decimal(ret, 9), result)
示例3: test_arrays_pg
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_arrays_pg(self, connection):
metadata = self.metadata
t1 = Table(
"t",
metadata,
Column("x", postgresql.ARRAY(Float)),
Column("y", postgresql.ARRAY(REAL)),
Column("z", postgresql.ARRAY(postgresql.DOUBLE_PRECISION)),
Column("q", postgresql.ARRAY(Numeric)),
)
metadata.create_all()
connection.execute(
t1.insert(), x=[5], y=[5], z=[6], q=[decimal.Decimal("6.4")]
)
row = connection.execute(t1.select()).first()
eq_(row, ([5], [5], [6], [decimal.Decimal("6.4")]))
示例4: test_arrays_base
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_arrays_base(self, connection):
metadata = self.metadata
t1 = Table(
"t",
metadata,
Column("x", sqltypes.ARRAY(Float)),
Column("y", sqltypes.ARRAY(REAL)),
Column("z", sqltypes.ARRAY(postgresql.DOUBLE_PRECISION)),
Column("q", sqltypes.ARRAY(Numeric)),
)
metadata.create_all()
connection.execute(
t1.insert(), x=[5], y=[5], z=[6], q=[decimal.Decimal("6.4")]
)
row = connection.execute(t1.select()).first()
eq_(row, ([5], [5], [6], [decimal.Decimal("6.4")]))
示例5: test_numeric_default
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_numeric_default(self, connection):
metadata = self.metadata
# pg8000 appears to fail when the value is 0,
# returns an int instead of decimal.
t = Table(
"t",
metadata,
Column("id", Integer, primary_key=True),
Column("nd", Numeric(asdecimal=True), default=1),
Column("nf", Numeric(asdecimal=False), default=1),
Column("fd", Float(asdecimal=True), default=1),
Column("ff", Float(asdecimal=False), default=1),
)
metadata.create_all()
connection.execute(t.insert())
row = connection.execute(t.select()).first()
assert isinstance(row[1], decimal.Decimal)
assert isinstance(row[2], float)
assert isinstance(row[3], decimal.Decimal)
assert isinstance(row[4], float)
eq_(row, (1, decimal.Decimal("1"), 1, decimal.Decimal("1"), 1))
示例6: test_python_type
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_python_type(self):
eq_(types.Integer().python_type, int)
eq_(types.Numeric().python_type, decimal.Decimal)
eq_(types.Numeric(asdecimal=False).python_type, float)
eq_(types.LargeBinary().python_type, util.binary_type)
eq_(types.Float().python_type, float)
eq_(types.Interval().python_type, datetime.timedelta)
eq_(types.Date().python_type, datetime.date)
eq_(types.DateTime().python_type, datetime.datetime)
eq_(types.String().python_type, str)
eq_(types.Unicode().python_type, util.text_type)
eq_(types.Enum("one", "two", "three").python_type, str)
assert_raises(
NotImplementedError, lambda: types.TypeEngine().python_type
)
示例7: _convert_type
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def _convert_type(self, dj_field, sa_type):
kwargs = {}
if sa_type is SA_ARRAY:
internal_type = dj_field.base_field.get_internal_type()
kwargs['item_type'] = self._types.get(internal_type)
if kwargs['item_type'] is None:
raise ConversionError(
'Unable convert array: '
'item type "%s" not found' % internal_type
)
elif sa_type is Geometry:
kwargs['geometry_type'] = 'POINT'
kwargs['srid'] = dj_field.srid
elif sa_type is sa_types.Numeric:
kwargs['scale'] = dj_field.decimal_places,
kwargs['precision'] = dj_field.max_digits
elif sa_type in (sa_types.String, sa_types.Text):
kwargs['length'] = dj_field.max_length
elif sa_type is SA_UUID:
kwargs['as_uuid'] = True
return sa_type(**kwargs)
示例8: _type_affinity
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def _type_affinity(self):
if bool(self.scale and self.scale > 0):
return sqltypes.Numeric
else:
return sqltypes.Integer
示例9: result_processor
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def result_processor(self, dialect, type_):
if not self.asdecimal:
return processors.to_float
else:
return sqltypes.Numeric.result_processor(self, dialect, type_)
示例10: test_numeric_reflection
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_numeric_reflection(self):
for typ in self._type_round_trip(
sql_types.Numeric(18, 5),
):
assert isinstance(typ, sql_types.Numeric)
eq_(typ.precision, 18)
eq_(typ.scale, 5)
示例11: _resolve_type
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def _resolve_type(self, t, **kw):
"""
Resolve types for String, Numeric, Date/Time, etc. columns
"""
t = self.normalize_name(t)
if t in ischema_names:
#print(t,ischema_names[t])
t = ischema_names[t]
if issubclass(t, sqltypes.String):
return t(length=kw['length']/2 if kw['chartype']=='UNICODE' else kw['length'],\
charset=kw['chartype'])
elif issubclass(t, sqltypes.Numeric):
return t(precision=kw['prec'], scale=kw['scale'])
elif issubclass(t, sqltypes.Time) or issubclass(t, sqltypes.DateTime):
#Timezone
tz=kw['fmt'][-1]=='Z'
#Precision
prec = kw['fmt']
#For some timestamps and dates, there is no precision, or indicatd in scale
prec = prec[prec.index('(') + 1: prec.index(')')] if '(' in prec else 0
prec = kw['scale'] if prec=='F' else int(prec)
#prec = int(prec[prec.index('(') + 1: prec.index(')')]) if '(' in prec else 0
return t(precision=prec,timezone=tz)
elif issubclass(t, sqltypes.Interval):
return t(day_precision=kw['prec'],second_precision=kw['scale'])
else:
return t() # For types like Integer, ByteInt
return ischema_names[None]
示例12: test_should_numeric_convert_float
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_should_numeric_convert_float():
assert get_field(types.Numeric()).type == graphene.Float
示例13: get_columns
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def get_columns(self, connection, table_name, schema=None, **kw):
SQL_COLS = """
SELECT CAST(a.attname AS VARCHAR(128)) as name,
a.atttypid as typeid,
not a.attnotnull as nullable,
a.attcolleng as length,
a.format_type
FROM _v_relation_column a
WHERE a.name = :tablename
ORDER BY a.attnum
"""
s = text(SQL_COLS,
bindparams=[bindparam('tablename', type_=sqltypes.String)],
typemap={'name': NAME,
'typeid': sqltypes.Integer,
'nullable': sqltypes.Boolean,
'length': sqltypes.Integer,
'format_type': sqltypes.String,
})
c = connection.execute(s, tablename=table_name)
rows = c.fetchall()
# format columns
columns = []
for name, typeid, nullable, length, format_type in rows:
coltype_class, has_length = oid_datatype_map[typeid]
if coltype_class is sqltypes.Numeric:
precision, scale = re.match(
r'numeric\((\d+),(\d+)\)', format_type).groups()
coltype = coltype_class(int(precision), int(scale))
elif has_length:
coltype = coltype_class(length)
else:
coltype = coltype_class()
columns.append({
'name': name,
'type': coltype,
'nullable': nullable,
})
return columns
示例14: __init__
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def __init__(self, *args, **kwargs):
if self.impl == types.Numeric:
kwargs['scale'] = 28
kwargs['precision'] = 1000
types.TypeDecorator.__init__(self, *args, **kwargs)
示例15: test_tuple_flag
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Numeric [as 別名]
def test_tuple_flag(self, connection):
metadata = self.metadata
t1 = Table(
"t1",
metadata,
Column("id", Integer, primary_key=True),
Column("data", self.ARRAY(String(5), as_tuple=True)),
Column(
"data2", self.ARRAY(Numeric(asdecimal=False), as_tuple=True)
),
)
metadata.create_all()
connection.execute(
t1.insert(), id=1, data=["1", "2", "3"], data2=[5.4, 5.6]
)
connection.execute(
t1.insert(), id=2, data=["4", "5", "6"], data2=[1.0]
)
connection.execute(
t1.insert(),
id=3,
data=[["4", "5"], ["6", "7"]],
data2=[[5.4, 5.6], [1.0, 1.1]],
)
r = connection.execute(t1.select().order_by(t1.c.id)).fetchall()
eq_(
r,
[
(1, ("1", "2", "3"), (5.4, 5.6)),
(2, ("4", "5", "6"), (1.0,)),
(3, (("4", "5"), ("6", "7")), ((5.4, 5.6), (1.0, 1.1))),
],
)
# hashable
eq_(
set(row[1] for row in r),
set([("1", "2", "3"), ("4", "5", "6"), (("4", "5"), ("6", "7"))]),
)