本文整理匯總了Python中sqlalchemy.types.Integer方法的典型用法代碼示例。如果您正苦於以下問題:Python types.Integer方法的具體用法?Python types.Integer怎麽用?Python types.Integer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sqlalchemy.types
的用法示例。
在下文中一共展示了types.Integer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_type
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def get_type(data_type):
type_map = {
"bytes": types.LargeBinary,
"boolean": types.Boolean,
"date": types.Date,
"datetime": types.DateTime,
"double": types.Numeric,
"text": types.String,
"keyword": types.String,
"integer": types.Integer,
"half_float": types.Float,
"geo_point": types.String,
# TODO get a solution for nested type
"nested": types.String,
# TODO get a solution for object
"object": types.BLOB,
"long": types.BigInteger,
"float": types.Float,
"ip": types.String,
}
type_ = type_map.get(data_type)
if not type_:
logger.warning(f"Unknown type found {data_type} reverting to string")
type_ = types.String
return type_
示例2: fields_map
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def fields_map(self, field_type):
if field_type == "primary":
return ID(stored=True, unique=True)
type_map = {
'date': types.Date,
'datetime': types.DateTime,
'boolean': types.Boolean,
'integer': types.Integer,
'float': types.Float
}
if isinstance(field_type, str):
field_type = type_map.get(field_type, types.Text)
if not isinstance(field_type, type):
field_type = field_type.__class__
if issubclass(field_type, (types.DateTime, types.Date)):
return DATETIME(stored=True, sortable=True)
elif issubclass(field_type, types.Integer):
return NUMERIC(stored=True, numtype=int)
elif issubclass(field_type, types.Float):
return NUMERIC(stored=True, numtype=float)
elif issubclass(field_type, types.Boolean):
return BOOLEAN(stored=True)
return TEXT(stored=True, analyzer=self.analyzer, sortable=False)
示例3: _add_annotation_docs_to_sqlite
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def _add_annotation_docs_to_sqlite(dbcon, annotation_docs, item):
# add full item path for convenience
annotation_docs.loc[:, "item_name"] = item['name']
# save tables to sqlite
annotation_docs.to_sql(
name='annotation_docs', con=dbcon, if_exists='append',
dtype={
'annotation_girder_id': String(),
'_modelType': String(),
'_version': Integer(),
'itemId': String(),
'item_name': String(),
'created': String(),
'creatorId': String(),
'public': Boolean(),
'updated': String(),
'updatedId': String(),
'groups': String(),
'element_count': Integer(),
'element_details': Integer(), },
index=False,
)
示例4: _add_annotation_elements_to_sqlite
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def _add_annotation_elements_to_sqlite(dbcon, annotation_elements):
# drop index relative to JSON since its pretty arbitrary and would
# change if the same girder client was used to get annotations twice
# the actual girder ID string is what really matters and should be used
annotation_elements.drop(
labels=['annidx', 'elementidx'], axis=1, inplace=True)
annotation_elements.to_sql(
name='annotation_elements', con=dbcon, if_exists='append',
dtype={
'annotation_girder_id': String(),
'element_girder_id': String(),
'type': String(),
'group': String(),
'label': String(),
'color': String(),
'xmin': Integer(),
'xmax': Integer(),
'ymin': Integer(),
'ymax': Integer(),
'bbox_area': Integer(),
'coords_x': String(),
'coords_y': String(), },
index=False,
)
示例5: set_quality
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def set_quality(stage):
''' produces cube quality flag '''
col = 'DRP2QUAL' if stage == '2d' else 'DRP3QUAL'
label = 'cubequal{0}'.format(stage)
kwarg = 'DRP{0}QUAL'.format(stage[0])
@hybrid_property
def quality(self):
bits = self.getQualBits(stage=stage)
return int(bits)
@quality.expression
def quality(cls):
return select([FitsHeaderValue.value.cast(Integer)]).\
where(and_(FitsHeaderKeyword.pk==FitsHeaderValue.fits_header_keyword_pk,
FitsHeaderKeyword.label.ilike(kwarg),
FitsHeaderValue.cube_pk==cls.pk)).\
label(label)
return quality
示例6: set_manga_target
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def set_manga_target(targtype):
''' produces manga_target flags '''
label = 'mngtrg{0}'.format(targtype)
kwarg = 'MNGT%RG{0}'.format(targtype)
@hybrid_property
def target(self):
bits = self.getTargBits(targtype=targtype)
return int(bits)
@target.expression
def target(cls):
return select([FitsHeaderValue.value.cast(Integer)]).\
where(and_(FitsHeaderKeyword.pk==FitsHeaderValue.fits_header_keyword_pk,
FitsHeaderKeyword.label.ilike(kwarg),
FitsHeaderValue.cube_pk==cls.pk)).\
label(label)
return target
示例7: spaxel_factory
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def spaxel_factory(classname, clean=None):
''' class factory for the spaxelprop tables '''
if clean:
classname = 'Clean{0}'.format(classname)
tablename = classname.lower()
params = {'__tablename__': tablename, '__table_args__': {'autoload': True, 'schema': 'mangadapdb'}}
if clean:
params.update({'pk': Column(Integer, primary_key=True)})
def newrepr(self):
return '<{2} (pk={0}, file={1})'.format(self.pk, self.file_pk, classname)
try:
newclass = type(classname, (Base, SpaxelAtts,), params)
newclass.__repr__ = newrepr
except Exception as e:
newclass = None
return newclass
# create the (clean)spaxel models from the DAP datamodel
示例8: visit_column
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def visit_column(self, delta):
table = delta.table
colspec = self.get_column_specification(delta.result_column)
if delta.result_column.autoincrement:
primary_keys = [c for c in table.primary_key.columns
if (c.autoincrement and
isinstance(c.type, sqltypes.Integer) and
not c.foreign_keys)]
if primary_keys:
first = primary_keys.pop(0)
if first.name == delta.current_name:
colspec += " AUTO_INCREMENT"
q = util.safe_quote(table)
old_col_name = self.preparer.quote(delta.current_name, q)
self.start_alter_table(table)
self.append("CHANGE COLUMN %s " % old_col_name)
self.append(colspec)
self.execute()
示例9: _adapt_expression
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def _adapt_expression(self, op, other_comparator):
"""evaluate the return type of <self> <op> <othertype>,
and apply any adaptations to the given operator.
This method determines the type of a resulting binary expression
given two source types and an operator. For example, two
:class:`.Column` objects, both of the type :class:`.Integer`, will
produce a :class:`.BinaryExpression` that also has the type
:class:`.Integer` when compared via the addition (``+``) operator.
However, using the addition operator with an :class:`.Integer`
and a :class:`.Date` object will produce a :class:`.Date`, assuming
"days delta" behavior by the database (in reality, most databases
other than Postgresql don't accept this particular operation).
The method returns a tuple of the form <operator>, <type>.
The resulting operator and type will be those applied to the
resulting :class:`.BinaryExpression` as the final operator and the
right-hand side of the expression.
Note that only a subset of operators make usage of
:meth:`._adapt_expression`,
including math operators and user-defined operators, but not
boolean comparison or special SQL keywords like MATCH or BETWEEN.
"""
return op, other_comparator.type
示例10: define_tables
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def define_tables(cls, metadata):
Table('test_table', metadata,
Column('id', Integer, primary_key=True),
Column('data', String(50))
)
示例11: test_nullable_reflection
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def test_nullable_reflection(self):
t = Table('t', self.metadata,
Column('a', Integer, nullable=True),
Column('b', Integer, nullable=False))
t.create()
eq_(
dict(
(col['name'], col['nullable'])
for col in inspect(self.metadata.bind).get_columns('t')
),
{"a": True, "b": False}
)
示例12: check_constraint
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def check_constraint(self, name, source, condition, schema=None, **kw):
t = sa_schema.Table(source, self.metadata(),
sa_schema.Column('x', Integer), schema=schema)
ck = sa_schema.CheckConstraint(condition, name=name, **kw)
t.append_constraint(ck)
return ck
示例13: compare_server_default
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def compare_server_default(self, inspector_column,
metadata_column,
rendered_metadata_default,
rendered_inspector_default):
# partially a workaround for SQLAlchemy issue #3023; if the
# column were created without "NOT NULL", MySQL may have added
# an implicit default of '0' which we need to skip
if metadata_column.type._type_affinity is sqltypes.Integer and \
inspector_column.primary_key and \
not inspector_column.autoincrement and \
not rendered_metadata_default and \
rendered_inspector_default == "'0'":
return False
else:
return rendered_inspector_default != rendered_metadata_default
示例14: get_columns
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def get_columns(self, connection, table_name, schema=None, **kw):
# Extend types supported by PrestoDialect as defined in PyHive
type_map = {
'bigint': sql_types.BigInteger,
'integer': sql_types.Integer,
'boolean': sql_types.Boolean,
'double': sql_types.Float,
'varchar': sql_types.String,
'timestamp': sql_types.TIMESTAMP,
'date': sql_types.DATE,
'array<bigint>': sql_types.ARRAY(sql_types.Integer),
'array<varchar>': sql_types.ARRAY(sql_types.String)
}
rows = self._get_table_columns(connection, table_name, schema)
result = []
for row in rows:
try:
coltype = type_map[row.Type]
except KeyError:
logger.warn("Did not recognize type '%s' of column '%s'" % (row.Type, row.Column))
coltype = sql_types.NullType
result.append({
'name': row.Column,
'type': coltype,
# newer Presto no longer includes this column
'nullable': getattr(row, 'Null', True),
'default': None,
})
return result
示例15: test_reflect_select
# 需要導入模塊: from sqlalchemy import types [as 別名]
# 或者: from sqlalchemy.types import Integer [as 別名]
def test_reflect_select(table, table_using_test_dataset):
for table in [table, table_using_test_dataset]:
assert len(table.c) == 18
assert isinstance(table.c.integer, Column)
assert isinstance(table.c.integer.type, types.Integer)
assert isinstance(table.c.timestamp.type, types.TIMESTAMP)
assert isinstance(table.c.string.type, types.String)
assert isinstance(table.c.float.type, types.Float)
assert isinstance(table.c.boolean.type, types.Boolean)
assert isinstance(table.c.date.type, types.DATE)
assert isinstance(table.c.datetime.type, types.DATETIME)
assert isinstance(table.c.time.type, types.TIME)
assert isinstance(table.c.bytes.type, types.BINARY)
assert isinstance(table.c['record.age'].type, types.Integer)
assert isinstance(table.c['record.name'].type, types.String)
assert isinstance(table.c['nested_record.record.age'].type, types.Integer)
assert isinstance(table.c['nested_record.record.name'].type, types.String)
assert isinstance(table.c.array.type, types.ARRAY)
rows = table.select().execute().fetchall()
assert len(rows) == 1000