本文整理匯總了Python中sqlalchemy.table.b方法的典型用法代碼示例。如果您正苦於以下問題:Python table.b方法的具體用法?Python table.b怎麽用?Python table.b使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sqlalchemy.table
的用法示例。
在下文中一共展示了table.b方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _joincond_trim_constraints
# 需要導入模塊: from sqlalchemy import table [as 別名]
# 或者: from sqlalchemy.table import b [as 別名]
def _joincond_trim_constraints(
cls, a, b, constraints, consider_as_foreign_keys):
# more than one constraint matched. narrow down the list
# to include just those FKCs that match exactly to
# "consider_as_foreign_keys".
if consider_as_foreign_keys:
for const in list(constraints):
if set(f.parent for f in const.elements) != set(
consider_as_foreign_keys):
del constraints[const]
# if still multiple constraints, but
# they all refer to the exact same end result, use it.
if len(constraints) > 1:
dedupe = set(tuple(crit) for crit in constraints.values())
if len(dedupe) == 1:
key = list(constraints)[0]
constraints = {key: constraints[key]}
if len(constraints) != 1:
raise exc.AmbiguousForeignKeysError(
"Can't determine join between '%s' and '%s'; "
"tables have more than one foreign key "
"constraint relationship between them. "
"Please specify the 'onclause' of this "
"join explicitly." % (a.description, b.description))
示例2: with_for_update
# 需要導入模塊: from sqlalchemy import table [as 別名]
# 或者: from sqlalchemy.table import b [as 別名]
def with_for_update(self, nowait=False, read=False, of=None):
"""Specify a ``FOR UPDATE`` clause for this :class:`.GenerativeSelect`.
E.g.::
stmt = select([table]).with_for_update(nowait=True)
On a database like Postgresql or Oracle, the above would render a
statement like::
SELECT table.a, table.b FROM table FOR UPDATE NOWAIT
on other backends, the ``nowait`` option is ignored and instead
would produce::
SELECT table.a, table.b FROM table FOR UPDATE
When called with no arguments, the statement will render with
the suffix ``FOR UPDATE``. Additional arguments can then be
provided which allow for common database-specific
variants.
:param nowait: boolean; will render ``FOR UPDATE NOWAIT`` on Oracle
and Postgresql dialects.
:param read: boolean; will render ``LOCK IN SHARE MODE`` on MySQL,
``FOR SHARE`` on Postgresql. On Postgresql, when combined with
``nowait``, will render ``FOR SHARE NOWAIT``.
:param of: SQL expression or list of SQL expression elements
(typically :class:`.Column` objects or a compatible expression) which
will render into a ``FOR UPDATE OF`` clause; supported by PostgreSQL
and Oracle. May render as a table or as a column depending on
backend.
.. versionadded:: 0.9.0
"""
self._for_update_arg = ForUpdateArg(nowait=nowait, read=read, of=of)
示例3: select_from
# 需要導入模塊: from sqlalchemy import table [as 別名]
# 或者: from sqlalchemy.table import b [as 別名]
def select_from(self, fromclause):
"""return a new :func:`.select` construct with the
given FROM expression
merged into its list of FROM objects.
E.g.::
table1 = table('t1', column('a'))
table2 = table('t2', column('b'))
s = select([table1.c.a]).\\
select_from(
table1.join(table2, table1.c.a==table2.c.b)
)
The "from" list is a unique set on the identity of each element,
so adding an already present :class:`.Table` or other selectable
will have no effect. Passing a :class:`.Join` that refers
to an already present :class:`.Table` or other selectable will have
the effect of concealing the presence of that selectable as
an individual element in the rendered FROM list, instead
rendering it into a JOIN clause.
While the typical purpose of :meth:`.Select.select_from` is to
replace the default, derived FROM clause with a join, it can
also be called with individual table elements, multiple times
if desired, in the case that the FROM clause cannot be fully
derived from the columns clause::
select([func.count('*')]).select_from(table1)
"""
self.append_from(fromclause)
示例4: select_from
# 需要導入模塊: from sqlalchemy import table [as 別名]
# 或者: from sqlalchemy.table import b [as 別名]
def select_from(self, fromclause):
r"""return a new :func:`.select` construct with the
given FROM expression
merged into its list of FROM objects.
E.g.::
table1 = table('t1', column('a'))
table2 = table('t2', column('b'))
s = select([table1.c.a]).\
select_from(
table1.join(table2, table1.c.a==table2.c.b)
)
The "from" list is a unique set on the identity of each element,
so adding an already present :class:`.Table` or other selectable
will have no effect. Passing a :class:`.Join` that refers
to an already present :class:`.Table` or other selectable will have
the effect of concealing the presence of that selectable as
an individual element in the rendered FROM list, instead
rendering it into a JOIN clause.
While the typical purpose of :meth:`.Select.select_from` is to
replace the default, derived FROM clause with a join, it can
also be called with individual table elements, multiple times
if desired, in the case that the FROM clause cannot be fully
derived from the columns clause::
select([func.count('*')]).select_from(table1)
"""
self.append_from(fromclause)