本文整理匯總了Python中sqlalchemy.func.random方法的典型用法代碼示例。如果您正苦於以下問題:Python func.random方法的具體用法?Python func.random怎麽用?Python func.random使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sqlalchemy.func
的用法示例。
在下文中一共展示了func.random方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_latencies_sample
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def get_latencies_sample(db_session, endpoint_id, interval, sample_size=500):
criterion = create_time_based_sample_criterion(interval.start_date(), interval.end_date())
dialect = db_session.bind.dialect.name
if dialect in ['sqlite', 'mysql']:
order_by = func.random() if dialect == 'sqlite' else func.rand()
items = db_session.query(Request.duration) \
.filter(Request.endpoint_id == endpoint_id, *criterion) \
.order_by(order_by) \
.limit(sample_size) \
.all()
durations = [item.duration for item in items]
return durations
else:
return get_latencies_in_timeframe(db_session, endpoint_id, interval.start_date(), interval.end_date())
示例2: get_encoding_maps
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def get_encoding_maps(encrypted_audio_stimuli):
"""
Build a stimulus key translation map from the `encypted_audio_stimuli`.
Parameters
----------
encrypted_audio_stimuli: list of tuple
The first element of each duple is a key, the second is the encrypted audio_file_path
For all non-references, the key should be of the form E[0-9+]. The order of the stimuli will be random (except
for the references)
Returns
-------
encoding_map : dict
A map from unencoded to encoded stimulus keys
decoding_map : dict
A map from encoded to unencoded stimulus keys
decrypted_filenames : dict
A map from stimulus key to filename
"""
decrypted_filenames = {}
encoding_map = {}
decoding_map = {}
# decrypt the URLs to find the mapping between s_id and e_id and the real filename
for k, v in encrypted_audio_stimuli:
adict = _decode_url(v)
decrypted_filenames[adict['s_id']] = adict['URL']
encoding_map[adict['s_id']] = adict['e_id']
decoding_map[adict['e_id']] = adict['s_id']
return encoding_map, decoding_map, decrypted_filenames
示例3: generate_comparison_pairs
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def generate_comparison_pairs(condition_datas):
"""
Generate all stimulus comparison pairs for a condition and return in a random order for a paired comparison test.
Parameters
----------
condition_datas: list of dict
List of dictionary of condition data as returned in the test_configuration defined by get_test_configurations()
Returns
-------
condition_datas: list of dict
List of updated dictionary of condition data with a new field, `comparison_pairs`, which is a list of stimulus
pairs, e.g. (('E1','E2'),('E5','E8'),...)
"""
for condition_data in condition_datas:
stimulus_names = [c[0] for c in condition_data['stimulus_files']]
pairs = []
for x in itertools.combinations(stimulus_names, 2):
if random.randint(0, 1):
pairs.append(x)
else:
pairs.append(x[::-1])
random.shuffle(pairs)
condition_data['comparison_pairs'] = pairs
return condition_datas
示例4: get_random_people
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def get_random_people(n, refset_only=False):
# this simpler way didn't work: func.setseed(0.42)
# below way is from https://github.com/khanduri/khanduri.github.io/blob/master/_posts/2016-02-26-fetch-rows-in-random-order-with-seed-support.md
sql = text('select setseed({0});'.format(0.42))
db.engine.execute(sql)
q = Person.query
if refset_only:
q = q.filter(Person.campaign == "2015_with_urls")
q = q.order_by(func.random())
q = q.limit(n)
people = q.all()
return people
示例5: test_generic_random
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def test_generic_random(self):
assert func.random().type == sqltypes.NULLTYPE
assert isinstance(func.random(type_=Integer).type, Integer)
for ret, dialect in [
("random()", sqlite.dialect()),
("random()", postgresql.dialect()),
("rand()", mysql.dialect()),
("random()", oracle.dialect()),
]:
self.assert_compile(func.random(), ret, dialect=dialect)
示例6: get_learnings
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def get_learnings(how_many=12, sort_order="recent", offset=0):
''' Gather and return some recent definitions
'''
order_descending = Definition.creation_date.desc()
order_random = func.random()
order_alphabetical = Definition.term
order_function = order_descending
prefix_singluar = "I recently learned the definition for"
prefix_plural = "I recently learned definitions for"
no_definitions_text = "I haven't learned any definitions yet."
if sort_order == "random":
order_function = order_random
elif sort_order == "alpha":
order_function = order_alphabetical
if sort_order == "random" or sort_order == "alpha" or offset > 0:
prefix_singluar = "I know the definition for"
prefix_plural = "I know definitions for"
# if how_many is 0, ignore offset and return all results
if how_many == 0:
definitions = db.session.query(Definition).order_by(order_function).all()
# if order is random and there is an offset, randomize the results after the query
elif sort_order == "random" and offset > 0:
definitions = db.session.query(Definition).order_by(order_descending).limit(how_many).offset(offset).all()
random.shuffle(definitions)
else:
definitions = db.session.query(Definition).order_by(order_function).limit(how_many).offset(offset).all()
if not definitions:
return no_definitions_text, no_definitions_text
wording = prefix_plural if len(definitions) > 1 else prefix_singluar
plain_text = "{}: {}".format(wording, ', '.join([item.term for item in definitions]))
rich_text = "{}: {}".format(wording, ', '.join([make_bold(item.term) for item in definitions]))
return plain_text, rich_text
示例7: parse_learnings_params
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def parse_learnings_params(command_params):
''' Parse the passed learnings command params
'''
recent_args = {}
# extract parameters
params_list = command_params.split(' ')
for param in params_list:
if param == "random":
recent_args['sort_order'] = param
continue
if param == "alpha" or param == "alphabetical":
recent_args['sort_order'] = "alpha"
continue
if param == "all":
recent_args['how_many'] = 0
continue
try:
passed_int = int(param)
if 'how_many' not in recent_args:
recent_args['how_many'] = passed_int
elif 'offset' not in recent_args:
recent_args['offset'] = passed_int
except ValueError:
continue
return recent_args
示例8: Random
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def Random(self):
"""Get the backend-specific random function.
This can be used to select a random row from a table, e.g.
session.query(Table).order_by(db.Random()).first()
"""
if self.url.startswith("mysql"):
return func.rand
else:
return func.random # for PostgreSQL, SQLite
示例9: select_random
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def select_random(engine, table_or_columns, limit=5):
"""
Randomly select some rows from table.
"""
s = select(table_or_columns).order_by(func.random()).limit(limit)
return engine.execute(s).fetchall()
示例10: handle_next
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def handle_next(session, bot, chat, tg_chat, user):
"""Handle the /next call or the 'next' button click."""
# We are tagging a whole sticker set. Skip the current sticker
if chat.tag_mode == TagMode.STICKER_SET:
# Check there is a next sticker
stickers = chat.current_sticker.sticker_set.stickers
for index, sticker in enumerate(stickers):
if sticker == chat.current_sticker and index + 1 < len(stickers):
# We found the next sticker. Send the messages and return
chat.current_sticker = stickers[index + 1]
send_tag_messages(chat, tg_chat, user)
return
# There are no stickers left, reset the chat and send success message.
chat.current_sticker.sticker_set.completely_tagged = True
send_tagged_count_message(session, bot, user, chat)
tg_chat.send_message(
"The full sticker set is now tagged.", reply_markup=get_main_keyboard(user)
)
chat.cancel(bot)
# Find a random sticker with no changes
elif chat.tag_mode == TagMode.RANDOM:
base_query = (
session.query(Sticker)
.outerjoin(Sticker.changes)
.join(Sticker.sticker_set)
.filter(Change.id.is_(None))
.filter(StickerSet.international.is_(False))
.filter(StickerSet.banned.is_(False))
.filter(StickerSet.nsfw.is_(False))
.filter(StickerSet.furry.is_(False))
)
# Let the users tag the deluxe sticker set first.
# If there are no more deluxe sets, just tag another random sticker.
# Remove the favoring of deluxe stickers until the deluxe pool is bigger again.
# sticker = base_query.filter(StickerSet.deluxe.is_(True)) \
# .order_by(func.random()) \
# .limit(1) \
# .one_or_none()
# if sticker is None:
sticker = base_query.order_by(func.random()).limit(1).one_or_none()
# No stickers for tagging left :)
if not sticker:
call_tg_func(
tg_chat,
"send_message",
["It looks like all stickers are already tagged :)."],
{"reply_markup": get_main_keyboard(user)},
)
chat.cancel(bot)
return
# Found a sticker. Send the messages
chat.current_sticker = sticker
send_tag_messages(chat, tg_chat, user, send_set_info=True)
示例11: tablesample
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def tablesample(selectable, sampling, name=None, seed=None):
"""Return a :class:`.TableSample` object.
:class:`.TableSample` is an :class:`.Alias` subclass that represents
a table with the TABLESAMPLE clause applied to it.
:func:`~.expression.tablesample`
is also available from the :class:`.FromClause` class via the
:meth:`.FromClause.tablesample` method.
The TABLESAMPLE clause allows selecting a randomly selected approximate
percentage of rows from a table. It supports multiple sampling methods,
most commonly BERNOULLI and SYSTEM.
e.g.::
from sqlalchemy import func
selectable = people.tablesample(
func.bernoulli(1),
name='alias',
seed=func.random())
stmt = select([selectable.c.people_id])
Assuming ``people`` with a column ``people_id``, the above
statement would render as::
SELECT alias.people_id FROM
people AS alias TABLESAMPLE bernoulli(:bernoulli_1)
REPEATABLE (random())
.. versionadded:: 1.1
:param sampling: a ``float`` percentage between 0 and 100 or
:class:`.functions.Function`.
:param name: optional alias name
:param seed: any real-valued SQL expression. When specified, the
REPEATABLE sub-clause is also rendered.
"""
return _interpret_as_from(selectable).tablesample(
sampling, name=name, seed=seed)
示例12: get_test_configurations
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def get_test_configurations(condition_ids, participant_id):
"""
Generate template configuration variables from the list of experimental conditions.
Parameters
----------
condition_ids : list
participant_id : int
Returns
-------
test_configuration : list of list of dict
A list of dictionaries containing all the configuration variables for each test, including a list of conditions
and their variables
"""
test_configurations = []
current_test_id = None
test_config = None
for c_id in condition_ids:
condition = Condition.query.filter_by(id=c_id).first()
if condition.test_id != current_test_id:
if test_config is not None:
test_configurations.append(test_config)
current_test_id = condition.test_id
test_config = {'test': json.loads(condition.test.data),
'conditions': [],
'condition_groups': {}}
condition_data = json.loads(condition.data)
condition_group_data = json.loads(condition.group.data)
if app.config['STIMULUS_ORDER_RANDOMIZED']:
random.shuffle(condition_group_data['stimulus_files'])
random.shuffle(condition_data['stimulus_keys'])
if app.config['ENCRYPT_AUDIO_STIMULI_URLS']:
condition_group_data['reference_files'] = encrypt_audio_stimuli(condition_group_data['reference_files'],
participant_id,
condition.group_id)
condition_group_data['stimulus_files'] = encrypt_audio_stimuli(condition_group_data['stimulus_files'],
participant_id,
condition.group_id)
encoding_map, _, _ = get_encoding_maps(condition_group_data['stimulus_files'])
condition_data['stimulus_keys'] = [encoding_map[key] for key in condition_data['stimulus_keys']]
test_config['condition_groups'][condition.group_id] = condition_group_data
# make sure that condition_id is added to the conditions dict
test_config['conditions'].append(dict({'id': condition.id, 'group_id': condition.group_id}, **condition_data))
test_configurations.append(test_config)
return test_configurations
示例13: _factory
# 需要導入模塊: from sqlalchemy import func [as 別名]
# 或者: from sqlalchemy.func import random [as 別名]
def _factory(cls, selectable, sampling, name=None, seed=None):
"""Return a :class:`_expression.TableSample` object.
:class:`_expression.TableSample` is an :class:`_expression.Alias`
subclass that represents
a table with the TABLESAMPLE clause applied to it.
:func:`_expression.tablesample`
is also available from the :class:`_expression.FromClause`
class via the
:meth:`_expression.FromClause.tablesample` method.
The TABLESAMPLE clause allows selecting a randomly selected approximate
percentage of rows from a table. It supports multiple sampling methods,
most commonly BERNOULLI and SYSTEM.
e.g.::
from sqlalchemy import func
selectable = people.tablesample(
func.bernoulli(1),
name='alias',
seed=func.random())
stmt = select([selectable.c.people_id])
Assuming ``people`` with a column ``people_id``, the above
statement would render as::
SELECT alias.people_id FROM
people AS alias TABLESAMPLE bernoulli(:bernoulli_1)
REPEATABLE (random())
.. versionadded:: 1.1
:param sampling: a ``float`` percentage between 0 and 100 or
:class:`_functions.Function`.
:param name: optional alias name
:param seed: any real-valued SQL expression. When specified, the
REPEATABLE sub-clause is also rendered.
"""
return coercions.expect(roles.FromClauseRole, selectable).tablesample(
sampling, name=name, seed=seed
)