當前位置: 首頁>>代碼示例>>Python>>正文


Python tokens.Token方法代碼示例

本文整理匯總了Python中spacy.tokens.Token方法的典型用法代碼示例。如果您正苦於以下問題:Python tokens.Token方法的具體用法?Python tokens.Token怎麽用?Python tokens.Token使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在spacy.tokens的用法示例。


在下文中一共展示了tokens.Token方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: from_token

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def from_token(token: Token, people: list = None) -> Optional['Pos']:
        if token.text[0] == '#':
            return Pos.HASHTAG
        elif token.text[0] == '@':
            return Pos.PROPN
        elif token.text[0] == ' ' or token.text[0] == "\n":
            return Pos.SPACE

        if token._.is_emoji:
            return Pos.EMOJI

        # Makeup for shortcomings of NLP detecting online nicknames
        if people is not None:
            if token.text in people:
                return Pos.PROPN

        if re.match(r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+', token.text):
            return Pos.URL

        try:
            return Pos[token.pos_]
        except KeyError:
            print("Unknown PoS: %s" % token.text)
            return Pos.X 
開發者ID:csvance,項目名稱:armchair-expert,代碼行數:26,代碼來源:nlp.py

示例2: triple_search

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def triple_search(triple: Triple, token: Token):
    """
    Recursive search through the dependency tree
    looks for triple values in each of the children and calls itself with the children nodes
    """
    question_word = None
    for word in token.children:
        if word.text.lower() in QuestionWord.question_words:
            question_word = QuestionWord(word)
            word = QuestionWord(word)
            if not triple.get_object():
                triple.set_object(question_word)
        elif word.dep_ in OBJECT_SET:
            triple.set_object(word)
        if word.dep_ in SUBJECT_SET:
            triple.set_subject(word)
        if isinstance(word, Token) and word.dep_ not in RECURSION_BLACKLIST:
            triple = triple_search(triple, word)
    if not triple.get_subject() and question_word:
        triple.set_subject(question_word)
    return triple 
開發者ID:Roboy,項目名稱:ravestate,代碼行數:23,代碼來源:extract_triples.py

示例3: get_token_feature

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def get_token_feature(t: Token, label: str) -> str:
    """Get the linguistic feature given a Spacy.Token obj and a label
    
    Arguments:
        t {Token} -- input token
        label {str} -- linguistic feature to return 
    
    Returns:
        str -- linguistic feature
    """

    if label in ['text', 'orth']:
        return t.text
    if label.lower() == 'ent':
        label = 'ent_type'
    return getattr(t, '{}_'.format(label.lower()), '') 
開發者ID:uwdata,項目名稱:errudite,代碼行數:18,代碼來源:helpers.py

示例4: remove_stopwords

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def remove_stopwords(self, sentence_str: str=None, tokens: List[Token]=None, use_lemma: bool=True) -> str:
        """Function which gets a normalized string of the sentence and removes stop words
        
        Keyword Arguments:
            sentence_str {str} -- input sentence string (default: {None})
            tokens {List[Token]} -- pre-computed token list, with feature added (default: {None})
            use_lemma {bool} -- return the lemma or the text (default: {True})
        
        Returns:
            str -- the str with stopwords removed
        """
        if not tokens and sentence_str:
            #sentence_str = normalize_answer(sentence_str)
            tokens = self.model(sentence_str)
        elif not tokens:
            tokens = []
        #word_tokenize(sentence_str)
        attr = 'lemma_' if use_lemma else 'text' # what to merge
        return ' '.join([ getattr(token, attr) for token in tokens
            if not token.is_punct and token.text not in STOP_WORDS and token.lemma_ not in STOP_WORDS]) 
開發者ID:uwdata,項目名稱:errudite,代碼行數:22,代碼來源:spacy_annotator.py

示例5: change_matched_token_form

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def change_matched_token_form(a_token: Token,
    a_pattern: Dict[str, str],
    b_pattern: Dict[str, str]) -> str:
    # first, deal with orth.
    if get_str_from_pattern(b_pattern):
        return get_str_from_pattern(b_pattern)
    elif 'TAG' in b_pattern and 'TAG' in a_pattern:  # deal with the tags
        # singular -> plural
        if a_pattern['TAG'] in ['NN', 'NNP'] and b_pattern['TAG'] in ['NNS', 'NNPS']:
            return pluralize(a_token.text)
        # plural -> singular
        elif b_pattern['TAG'] in ['NN', 'NNP'] and a_pattern['TAG'] in ['NNS', 'NNPS']:
            return singularize(a_token.text)
        # verb form change
        elif a_pattern['TAG'] in VBs and b_pattern['TAG'] in VBs:
            return conjugate(a_token.text, tag=b_pattern['TAG'])
    elif 'POS' in b_pattern and 'POS' in a_pattern:
        # if IS_DEBUGGING == 'change_matched_token_form':
        #    print ('unmachted token form change', a_token, b_token, a_pattern, b_pattern)
        return a_token.text
    return a_token.text 
開發者ID:uwdata,項目名稱:errudite,代碼行數:23,代碼來源:helpers.py

示例6: from_token

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def from_token(token: Token) -> 'MarkovNeighbor':
        key = token.text.lower()
        text = token.text
        if CapitalizationMode.from_token(token, CAPITALIZATION_COMPOUND_RULES) == CapitalizationMode.COMPOUND:
            compound = True
        else:
            compound = False
        pos = Pos.from_token(token)
        values = [0, 0]
        dist = [0] * (MARKOV_WINDOW_SIZE * 2 + 1)
        return MarkovNeighbor(key, text, pos, compound, values, dist) 
開發者ID:csvance,項目名稱:armchair-expert,代碼行數:13,代碼來源:markov_engine.py

示例7: analyze

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def analyze(token: Token, mode: CapitalizationMode):
        pos = Pos.from_token(token)
        mode = PoSCapitalizationMode(pos, mode)
        return mode.to_embedding() 
開發者ID:csvance,項目名稱:armchair-expert,代碼行數:6,代碼來源:structure.py

示例8: tokens_to_indices

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def tokens_to_indices(
        self, tokens: List[SpacyToken], vocabulary: Vocabulary
    ) -> Dict[str, List[numpy.ndarray]]:
        if not all(isinstance(x, SpacyToken) for x in tokens):
            raise ValueError(
                "The spacy indexer requires you to use a Tokenizer which produces SpacyTokens."
            )
        indices: List[numpy.ndarray] = [token.vector for token in tokens]
        return {"tokens": indices} 
開發者ID:allenai,項目名稱:allennlp,代碼行數:11,代碼來源:spacy_indexer.py

示例9: __init__

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def __init__(self, tokens: List[Token], token_indexers: Dict[str, TokenIndexer]) -> None:
        self.tokens = tokens
        self._token_indexers = token_indexers
        self._indexed_tokens: Optional[Dict[str, IndexedTokenList]] = None

        if not all(isinstance(x, (Token, SpacyToken)) for x in tokens):
            raise ConfigurationError(
                "TextFields must be passed Tokens. "
                "Found: {} with types {}.".format(tokens, [type(x) for x in tokens])
            ) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:12,代碼來源:text_field.py

示例10: __init__

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def __init__(self, tokens             , token_indexers                         )        :
        self.tokens = tokens
        self._token_indexers = token_indexers
        self._indexed_tokens = None
        self._indexer_name_to_indexed_token = None

        if not all([isinstance(x, (Token, SpacyToken)) for x in tokens]):
            raise ConfigurationError(u"TextFields must be passed Tokens. "
                                     u"Found: {} with types {}.".format(tokens, [type(x) for x in tokens]))

    #overrides 
開發者ID:plasticityai,項目名稱:magnitude,代碼行數:13,代碼來源:text_field.py

示例11: __init__

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def __init__(self, tokens: List[Token], token_indexers: Dict[str, TokenIndexer]) -> None:
        self.tokens = tokens
        self._token_indexers = token_indexers
        self._indexed_tokens: Optional[Dict[str, TokenList]] = None
        self._indexer_name_to_indexed_token: Optional[Dict[str, List[str]]] = None

        if not all([isinstance(x, (Token, SpacyToken)) for x in tokens]):
            raise ConfigurationError("TextFields must be passed Tokens. "
                                     "Found: {} with types {}.".format(tokens, [type(x) for x in tokens])) 
開發者ID:jcyk,項目名稱:gtos,代碼行數:11,代碼來源:text_field.py

示例12: __init__

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def __init__(self, token: Token):
        self.text = self.question_words[token.text.lower()]
        self.lemma_ = self.question_words[token.text.lower()]
        self.pos_ = self.question_pos
        self.dep_ = token.dep_
        self.is_space = False
        self.children = list() 
開發者ID:Roboy,項目名稱:ravestate,代碼行數:9,代碼來源:question_word.py

示例13: __init__

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def __init__(self, subject: Token = None, predicate: Token = None, object: Token = None):
        self.set_subject(subject)
        self.set_predicate(predicate)
        self.set_object(object) 
開發者ID:Roboy,項目名稱:ravestate,代碼行數:6,代碼來源:triple.py

示例14: set_subject

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def set_subject(self, subject: Union[Token, QuestionWord]):
        self._subject = subject 
開發者ID:Roboy,項目名稱:ravestate,代碼行數:4,代碼來源:triple.py

示例15: set_predicate

# 需要導入模塊: from spacy import tokens [as 別名]
# 或者: from spacy.tokens import Token [as 別名]
def set_predicate(self, predicate: Token):
        self._predicate = predicate 
開發者ID:Roboy,項目名稱:ravestate,代碼行數:4,代碼來源:triple.py


注:本文中的spacy.tokens.Token方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。