當前位置: 首頁>>代碼示例>>Python>>正文


Python spacy.__version__方法代碼示例

本文整理匯總了Python中spacy.__version__方法的典型用法代碼示例。如果您正苦於以下問題:Python spacy.__version__方法的具體用法?Python spacy.__version__怎麽用?Python spacy.__version__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在spacy的用法示例。


在下文中一共展示了spacy.__version__方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_morph_exception

# 需要導入模塊: import spacy [as 別名]
# 或者: from spacy import __version__ [as 別名]
def test_morph_exception() -> None:
    assert spacy.__version__ <= SPACY_VERSION

    lang = RO
    text = "Ce mai faci?"

    download(lang=lang)

    try:
        nlp = load(lang=lang)
        assert nlp._meta["lang"] == f"udpipe_{lang}"
        doc = nlp(text)
    except ValueError:
        nlp = load(lang=lang, ignore_tag_map=True)
        assert nlp._meta["lang"] == f"udpipe_{lang}"
        doc = nlp(text)

    assert doc 
開發者ID:TakeLab,項目名稱:spacy-udpipe,代碼行數:20,代碼來源:test_spacy_udpipe.py

示例2: __init__

# 需要導入模塊: import spacy [as 別名]
# 或者: from spacy import __version__ [as 別名]
def __init__(self, language: str = "en_core_web_sm", rule_based: bool = False) -> None:
        # we need spacy's dependency parser if we're not using rule-based sentence boundary detection.
        self.spacy = get_spacy_model(language, parse=not rule_based, ner=False, pos_tags=False)
        if rule_based:
            # we use `sentencizer`, a built-in spacy module for rule-based sentence boundary detection.
            # depending on the spacy version, it could be called 'sentencizer' or 'sbd'
            sbd_name = "sbd" if spacy.__version__ < "2.1" else "sentencizer"
            if not self.spacy.has_pipe(sbd_name):
                sbd = self.spacy.create_pipe(sbd_name)
                self.spacy.add_pipe(sbd) 
開發者ID:allenai,項目名稱:allennlp,代碼行數:12,代碼來源:sentence_splitter.py

示例3: get_report

# 需要導入模塊: import spacy [as 別名]
# 或者: from spacy import __version__ [as 別名]
def get_report(self):
        """
        Generates a report about the pipeline class's configuration
        :return: str
        """

        # Get data about these components
        learner_name, learner = self.get_learner()
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()
        spacy_metadata = self.spacy_pipeline.meta

        # Start the report with the name of the class and the docstring
        report = f"{type(self).__name__}\n{self.__doc__}\n\n"

        report += f"Report created at {time.asctime()}\n\n"
        report += f"MedaCy Version: {medacy.__version__}\nSpaCy Version: {spacy.__version__}\n"
        report += f"SpaCy Model: {spacy_metadata['name']}, version {spacy_metadata['version']}\n"
        report += f"Entities: {self.entities}\n"
        report += f"Constructor arguments: {self._kwargs}\n\n"

        # Print data about the feature overlayers
        if self.overlayers:
            report += "Feature Overlayers:\n\n"
            report += "\n\n".join(o.get_report() for o in self.overlayers) + '\n\n'

        # Print data about the feature extractor
        report += f"Feature Extractor: {type(feature_extractor).__name__} at {inspect.getfile(type(feature_extractor))}\n"
        report += f"\tWindow Size: {feature_extractor.window_size}\n"
        report += f"\tSpaCy Features: {feature_extractor.spacy_features}\n"

        # Print the name and location of the remaining components
        report += f"Learner: {learner_name} at {inspect.getfile(type(learner))}\n"

        if self.get_tokenizer():
            report += f"Tokenizer: {type(tokenizer).__name__} at {inspect.getfile(type(tokenizer))}\n"
        else:
            report += f"Tokenizer: spaCy pipeline default\n"

        return report 
開發者ID:NLPatVCU,項目名稱:medaCy,代碼行數:42,代碼來源:base_pipeline.py

示例4: __init__

# 需要導入模塊: import spacy [as 別名]
# 或者: from spacy import __version__ [as 別名]
def __init__(self):
        global lemminflect
        import lemminflect
        self.name = 'LemmInflect'
        self.version_string = 'LemmInflect version: %s' % lemminflect.__version__
        # Force loading dictionary and model so lazy loading doesn't show up in run times
        lemmas = lemminflect.getAllLemmas('testing', 'VERB')
        lemmas = lemminflect.getAllLemmasOOV('xxtesting', 'VERB')

    # Use only the dictionary methods 
開發者ID:bjascob,項目名稱:LemmInflect,代碼行數:12,代碼來源:20_TestLemmatizer.py

示例5: get_default_conda_env

# 需要導入模塊: import spacy [as 別名]
# 或者: from spacy import __version__ [as 別名]
def get_default_conda_env():
    """
    :return: The default Conda environment for MLflow Models produced by calls to
             :func:`save_model()` and :func:`log_model()`.
    """
    import spacy

    return _mlflow_conda_env(
        additional_conda_deps=None,
        additional_pip_deps=[
            "spacy=={}".format(spacy.__version__),
        ],
        additional_conda_channels=None) 
開發者ID:mlflow,項目名稱:mlflow,代碼行數:15,代碼來源:spacy.py


注:本文中的spacy.__version__方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。