本文整理匯總了Python中sox.Transformer方法的典型用法代碼示例。如果您正苦於以下問題:Python sox.Transformer方法的具體用法?Python sox.Transformer怎麽用?Python sox.Transformer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sox
的用法示例。
在下文中一共展示了sox.Transformer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _process_file
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def _process_file(file_item, target_sr):
src = file_item[0]
start = file_item[1]
end = file_item[2]
target = file_item[3]
tfm = sox.Transformer()
if start > 0 and end == float('inf'):
tfm.trim(start)
elif end != float('inf'):
tfm.trim(start, end)
tfm.convert(target_sr, 1, 16)
try:
tfm.build(src, target)
except sox.core.SoxError:
logger.error('The following file could not be converted: %s', src)
示例2: run_pipeline
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def run_pipeline(pipeline, input_filename, output_filename):
"""Run an audio transform pipeline.
This will run the pipeline on an input audio file, producing an output audio
file. Transform parameters will be sampled at each stage.
Args:
pipeline: The pipeline to run, a list of AudioTransformStage objects.
input_filename: Path to the audio file to be transformed.
output_filename: Path to the resulting output audio file.
"""
transformer = sox.Transformer()
transformer.set_globals(guard=True)
for stage in pipeline:
stage.apply(transformer)
transformer.build(input_filename, output_filename)
示例3: mp3_to_flac
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def mp3_to_flac(data, samplerate, bitdepth):
tid = threading.get_ident()
tmp_filename = os.path.join('/tmp/transcode-{}.mp3'.format(tid))
tmp2_filename = os.path.join('/tmp/transcode-{}.flac'.format(tid))
with open(tmp_filename, 'wb') as content_file:
size = content_file.write(data)
status = 0 if size == len(data) else -1
transformer = sox.Transformer()
transformer.convert(samplerate=samplerate, n_channels=2, bitdepth=bitdepth)
transformer.build(tmp_filename, tmp2_filename)
# retrieve data in a buffer
with open(tmp2_filename, mode='rb') as file:
flac_data = file.read()
os.remove(tmp_filename)
os.remove(tmp2_filename)
return flac_data
示例4: mp3_to_flac
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def mp3_to_flac(data):
tmp_filename = os.path.join('/tmp/transcode-tmp.mp3')
tmp2_filename = os.path.join('/tmp/transcode-tmp.flac')
with open(tmp_filename, 'wb') as content_file:
size = content_file.write(data)
status = 0 if size == len(data) else -1
transformer = sox.Transformer()
transformer.convert(samplerate=16000, n_channels=2, bitdepth=16)
transformer.build(tmp_filename, tmp2_filename)
# retrieve data in a buffer
with open(tmp2_filename, mode='rb') as file:
flac_data = file.read()
os.remove(tmp_filename)
os.remove(tmp2_filename)
return flac_data
示例5: mp3_to_flac
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def mp3_to_flac(data):
tid = threading.get_ident()
tmp_filename = os.path.join('/tmp/transcode-{}.mp3'.format(tid))
tmp2_filename = os.path.join('/tmp/transcode-{}.flac'.format(tid))
with open(tmp_filename, 'wb') as content_file:
size = content_file.write(data)
status = 0 if size == len(data) else -1
transformer = sox.Transformer()
transformer.convert(samplerate=16000, n_channels=2, bitdepth=16)
transformer.build(tmp_filename, tmp2_filename)
# retrieve data in a buffer
with open(tmp2_filename, mode='rb') as file:
flac_data = file.read()
os.remove(tmp_filename)
os.remove(tmp2_filename)
return flac_data
示例6: __init__
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def __init__(self, name, params):
"""Initialize an AudioTransformStage.
Args:
name: The name of the stage. Should be the same as the name of the method
called on a sox.Transformer object.
params: A list of AudioTransformParameter objects.
"""
self.name = name
self.params = params
示例7: apply
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def apply(self, transformer):
"""Apply this stage to a sox.Transformer object.
Args:
transformer: The sox.Transformer object to which this pipeline stage
should be applied. No audio will actually be transformed until the
`build` method is called on `transformer`.
"""
args = dict((param.name, param.sample()) for param in self.params)
getattr(transformer, self.name)(**args)
示例8: ensure_samplerate
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def ensure_samplerate(audio_path):
samplerate = sox.file_info.sample_rate(audio_path)
if samplerate != 44100:
tfm = sox.Transformer()
tfm.rate(44100)
_, pyin_audio = tempfile.mkstemp(suffix='.wav')
tfm.build(audio_path, pyin_audio)
os.remove(audio_path)
shutil.move(pyin_audio, audio_path)
示例9: _generate_audio_file
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def _generate_audio_file(self):
"""
Generic method used as a Callback in TTSModule
- must provided the audio file and write it on the disk
.. raises:: FailToLoadSoundFile
"""
if self.path is None:
# we try to get the path from the env
self.path = self._get_pico_path()
# if still None, we set a default value
if self.path is None:
self.path = "/usr/bin/pico2wave"
# pico2wave needs that the file path ends with .wav
tmp_path = self.file_path+".wav"
pico2wave_options = ["-l=%s" % self.language, "-w=%s" % tmp_path]
final_command = list()
final_command.extend([self.path])
final_command.extend(pico2wave_options)
final_command.append(self.words)
logger.debug("[Pico2wave] command: %s" % final_command)
# generate the file with pico2wav
subprocess.call(final_command)
# convert samplerate
if self.samplerate is not None:
tfm = sox.Transformer()
tfm.rate(samplerate=self.samplerate)
tfm.build(str(tmp_path), str(tmp_path) + "tmp_name.wav")
os.rename(str(tmp_path) + "tmp_name.wav", tmp_path)
# remove the extension .wav
os.rename(tmp_path, self.file_path)
示例10: convert_audio
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def convert_audio(src_audio_path, dst_audio_path, file_type=None, audio_format=DEFAULT_FORMAT):
sample_rate, channels, width = audio_format
try:
transformer = sox.Transformer()
transformer.set_output_format(file_type=file_type, rate=sample_rate, channels=channels, bits=width*8)
transformer.build(src_audio_path, dst_audio_path)
except sox.core.SoxError:
return False
return True
示例11: mp3_to_flac
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def mp3_to_flac(data, dest_path, name):
tmp_filename = os.path.join('/tmp/transcode-tmp.mp3')
dest_filename = os.path.join(dest_path, name + '.flac')
with open(tmp_filename, 'wb') as content_file:
size = content_file.write(data)
status = 0 if size == len(data) else -1
transformer = sox.Transformer()
transformer.convert(samplerate=16000, n_channels=2, bitdepth=16)
transformer.build(tmp_filename, dest_filename)
return dest_filename
示例12: convert_audio_and_split_transcript
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def convert_audio_and_split_transcript(input_dir,
source_name,
target_name,
output_dir,
output_file):
"""Convert FLAC to WAV and split the transcript.
Args:
input_dir: the directory which holds the input dataset.
source_name: the name of the specified dataset. e.g. test-clean
target_name: the directory name for the newly generated audio files.
e.g. test-clean-wav
output_dir: the directory to place the newly generated csv files.
output_file: the name of the newly generated csv file. e.g. test-clean.csv
"""
logging.info("Processing audio and transcript for %s" % source_name)
source_dir = os.path.join(input_dir, source_name)
target_dir = os.path.join(input_dir, target_name)
if not gfile.Exists(target_dir):
gfile.MakeDirs(target_dir)
files = []
tfm = Transformer()
# Convert all FLAC file into WAV format. At the same time, generate the csv
for root, _, filenames in gfile.Walk(source_dir):
for filename in fnmatch.filter(filenames, "*.trans.txt"):
trans_file = os.path.join(root, filename)
with codecs.open(trans_file, "r", "utf-8") as fin:
for line in fin:
seqid, transcript = line.split(" ", 1)
# We do a encode-decode transformation here because the output type
# of encode is a bytes object, we need convert it to string.
transcript = (
unicodedata.normalize("NFKD", transcript)
.encode("ascii", "ignore")
.decode("ascii", "ignore")
.strip()
.lower()
)
# Convert FLAC to WAV.
flac_file = os.path.join(root, seqid + ".flac")
wav_file = os.path.join(target_dir, seqid + ".wav")
if not gfile.Exists(wav_file):
tfm.build(flac_file, wav_file)
# wav_filesize = os.path.getsize(wav_file)
wav_length = get_wave_file_length(wav_file)
speaker = seqid.split('-')[0]
files.append((os.path.abspath(wav_file), wav_length, transcript, speaker))
# Write to CSV file which contains three columns:
# "wav_filename", "wav_length_ms", "transcript", "speaker".
csv_file_path = os.path.join(output_dir, output_file)
df = pandas.DataFrame(
data=files, columns=["wav_filename", "wav_length_ms", "transcript", "speaker"]
)
df.to_csv(csv_file_path, index=False, sep="\t")
logging.info("Successfully generated csv file {}".format(csv_file_path))
示例13: preprocess
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def preprocess(data, input_dir, dest_dir, target_sr=None, speed=None,
overwrite=True):
speed = speed or []
speed.append(1)
speed = list(set(speed)) # Make uniqe
input_fname = os.path.join(input_dir,
data['input_relpath'],
data['input_fname'])
input_sr = sox.file_info.sample_rate(input_fname)
target_sr = target_sr or input_sr
os.makedirs(os.path.join(dest_dir, data['input_relpath']), exist_ok=True)
output_dict = {}
output_dict['transcript'] = data['transcript'].lower().strip()
output_dict['files'] = []
fname = os.path.splitext(data['input_fname'])[0]
for s in speed:
output_fname = fname + \
'{}.wav'.format('' if s == 1 else '-{}'.format(s))
output_fpath = os.path.join(dest_dir,
data['input_relpath'],
output_fname)
if not os.path.exists(output_fpath) or overwrite:
cbn = sox.Transformer().speed(factor=s).convert(target_sr)
cbn.build(input_fname, output_fpath)
file_info = sox.file_info.info(output_fpath)
file_info['fname'] = os.path.join(os.path.basename(dest_dir),
data['input_relpath'],
output_fname)
file_info['speed'] = s
output_dict['files'].append(file_info)
if s == 1:
file_info = sox.file_info.info(output_fpath)
output_dict['original_duration'] = file_info['duration']
output_dict['original_num_samples'] = file_info['num_samples']
return output_dict
示例14: resample_file
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def resample_file(resampled_dir, filepath, ext):
"""
Resample an audio file to 16kHZ and transform to monochannel
Remove incompatible files.
Args:
resampled_dir: Directory of transformed files.
filepath: Filepath of Audio
ext: File type e.g. "wav", "flac"
Returns:
"""
head, filename = os.path.split(filepath)
_, clsname = os.path.split(head)
filename, _ = os.path.splitext(filename)
new_dir = os.path.join(resampled_dir, clsname)
if not os.path.exists(new_dir):
os.makedirs(new_dir)
new_path = os.path.join(new_dir, filename + f'.{ext}')
# check if the resampled data exists.
if os.path.exists(new_path):
print(f"Resampled file {filepath} exists. Skip it.")
return None
transform = sox.Transformer()
transform.set_output_format(file_type='wav')
transform.convert(samplerate=16000, n_channels=1)
try:
transform.build(filepath, new_path)
print(f"Finished converting file {filepath}.")
return None
except sox.core.SoxError as e:
try:
# Check if the file is readable
librosa.load(filepath)
# if it is, force input format and try again
transform.set_input_format(file_type=ext)
transform.build(filepath, new_path)
return None
except Exception:
return filepath
示例15: preprocess
# 需要導入模塊: import sox [as 別名]
# 或者: from sox import Transformer [as 別名]
def preprocess(data, input_dir, dest_dir, target_sr=None, speed=None,
overwrite=True):
speed = speed or []
speed.append(1)
speed = list(set(speed)) # Make uniqe
input_fname = os.path.join(input_dir,
data['input_relpath'],
data['input_fname'])
input_sr = sox.file_info.sample_rate(input_fname)
target_sr = target_sr or input_sr
os.makedirs(os.path.join(dest_dir, data['input_relpath']), exist_ok=True)
output_dict = {}
output_dict['transcript'] = data['transcript'].lower().strip()
output_dict['files'] = []
fname = os.path.splitext(data['input_fname'])[0]
for s in speed:
output_fname = fname + '{}.wav'.format('' if s==1 else '-{}'.format(s))
output_fpath = os.path.join(dest_dir,
data['input_relpath'],
output_fname)
if not os.path.exists(output_fpath) or overwrite:
cbn = sox.Transformer().speed(factor=s).convert(target_sr)
cbn.build(input_fname, output_fpath)
file_info = sox.file_info.info(output_fpath)
file_info['fname'] = os.path.join(os.path.basename(dest_dir),
data['input_relpath'],
output_fname)
file_info['speed'] = s
output_dict['files'].append(file_info)
if s == 1:
file_info = sox.file_info.info(output_fpath)
output_dict['original_duration'] = file_info['duration']
output_dict['original_num_samples'] = file_info['num_samples']
return output_dict