當前位置: 首頁>>代碼示例>>Python>>正文


Python sonnet.Sequential方法代碼示例

本文整理匯總了Python中sonnet.Sequential方法的典型用法代碼示例。如果您正苦於以下問題:Python sonnet.Sequential方法的具體用法?Python sonnet.Sequential怎麽用?Python sonnet.Sequential使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sonnet的用法示例。


在下文中一共展示了sonnet.Sequential方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_ensemble

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def make_ensemble(num_actions: int,
                  num_ensemble: int = 20,
                  num_hidden_layers: int = 2,
                  num_units: int = 50,
                  prior_scale: float = 3.) -> Sequence[snt.Module]:
  """Convenience function to make an ensemble from flags."""
  output_sizes = [num_units] * num_hidden_layers + [num_actions]
  ensemble = []
  for _ in range(num_ensemble):
    network = snt.Sequential([
        snt.Flatten(),
        snt.nets.MLP(output_sizes),
    ])
    prior_network = snt.Sequential([
        snt.Flatten(),
        snt.nets.MLP(output_sizes),
    ])
    ensemble.append(NetworkWithPrior(network, prior_network, prior_scale))
  return ensemble 
開發者ID:deepmind,項目名稱:bsuite,代碼行數:21,代碼來源:agent.py

示例2: default_agent

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def default_agent(obs_spec: specs.Array,
                  action_spec: specs.DiscreteArray):
  """Initialize a DQN agent with default parameters."""
  del obs_spec  # Unused.
  network = snt.Sequential([
      snt.Flatten(),
      snt.nets.MLP([50, 50, action_spec.num_values]),
  ])
  optimizer = snt.optimizers.Adam(learning_rate=1e-3)
  return DQN(
      action_spec=action_spec,
      network=network,
      batch_size=32,
      discount=0.99,
      replay_capacity=10000,
      min_replay_size=100,
      sgd_period=1,
      target_update_period=4,
      optimizer=optimizer,
      epsilon=0.05,
      seed=42) 
開發者ID:deepmind,項目名稱:bsuite,代碼行數:23,代碼來源:agent.py

示例3: test_train

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def test_train(self):
    image = tf.random_uniform(shape=(_BATCH_SIZE, 784), maxval=1.)
    labels = tf.random_uniform(shape=(_BATCH_SIZE,), maxval=10, dtype=tf.int32)
    labels_one_hot = tf.one_hot(labels, 10)

    model = snt.Sequential([snt.BatchFlatten(), snt.nets.MLP([128, 128, 10])])
    logits = model(image)
    all_losses = tf.nn.softmax_cross_entropy_with_logits_v2(
        logits=logits, labels=labels_one_hot)
    loss = tf.reduce_mean(all_losses)
    layers = layer_collection.LayerCollection()
    optimizer = periodic_inv_cov_update_kfac_opt.PeriodicInvCovUpdateKfacOpt(
        invert_every=10,
        cov_update_every=1,
        learning_rate=0.03,
        cov_ema_decay=0.95,
        damping=100.,
        layer_collection=layers,
        momentum=0.9,
        num_burnin_steps=0,
        placement_strategy="round_robin")
    _construct_layer_collection(layers, [logits], tf.trainable_variables())

    train_step = optimizer.minimize(loss)
    counter = optimizer.counter
    max_iterations = 50

    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      coord = tf.train.Coordinator()
      tf.train.start_queue_runners(sess=sess, coord=coord)
      for iteration in range(max_iterations):
        sess.run([loss, train_step])
        counter_ = sess.run(counter)
        self.assertEqual(counter_, iteration + 1.0) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:37,代碼來源:periodic_inv_cov_update_kfac_opt_test.py

示例4: add_train_ops

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def add_train_ops(self,
                    num_classes,
                    joint_rep,
                    minibatch):
    """Add ops for training in the computation graph.

    Args:
      num_classes: number of classes to predict in the task.
      joint_rep: the joint sentence representation if the input is sentence
        pairs or the representation for the sentence if the input is a single
        sentence.
      minibatch: a minibatch of sequences of embeddings.
    Returns:
      train_accuracy: the accuracy on the training dataset
      loss: training loss.
      opt_step: training op.
    """
    if self.linear_classifier is None:
      classifier_layers = []
      classifier_layers.append(snt.Linear(num_classes))
      self.linear_classifier = snt.Sequential(classifier_layers)
    logits = self.linear_classifier(joint_rep)
    # Losses and optimizer.
    def get_loss(logits, labels):
      return tf.reduce_mean(
          tf.nn.sparse_softmax_cross_entropy_with_logits(
              labels=labels, logits=logits))

    loss = get_loss(logits, minibatch.sentiment)
    train_accuracy = utils.get_accuracy(logits, minibatch.sentiment)
    opt_step = self._add_optimize_op(loss)
    return train_accuracy, loss, opt_step 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:34,代碼來源:robust_model.py

示例5: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def _build(self, inputs):
        hparams = self._hparams
        hidden = snt.Sequential([
            util.concat_features,
            util.make_mlp(
                hparams,
                hparams.obs_decoder_fc_hidden_layers,
                activate_final=True),
        ])(inputs)
        return (self._build_game_output(hidden),
                self._build_score(hidden),
                self._build_game_over(hidden)) 
開發者ID:google,項目名稱:vae-seq,代碼行數:14,代碼來源:codec.py

示例6: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def _build(self, inputs):
        if self._input_encoders:
            inputs = snt.Sequential(self._input_encoders)(inputs)
        return self._decoder(inputs) 
開發者ID:google,項目名稱:vae-seq,代碼行數:6,代碼來源:codec.py

示例7: run

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def run(bsuite_id: str) -> str:
  """Runs a DQN agent on a given bsuite environment, logging to CSV."""

  env = bsuite.load_and_record(
      bsuite_id=bsuite_id,
      save_path=FLAGS.save_path,
      logging_mode=FLAGS.logging_mode,
      overwrite=FLAGS.overwrite,
  )

  # Making the networks.
  hidden_units = [FLAGS.num_units] * FLAGS.num_hidden_layers
  network = snt.Sequential([
      snt.Flatten(),
      snt.nets.MLP(hidden_units + [env.action_spec().num_values]),
  ])
  optimizer = snt.optimizers.Adam(learning_rate=FLAGS.learning_rate)

  agent = dqn.DQN(
      action_spec=env.action_spec(),
      network=network,
      batch_size=FLAGS.batch_size,
      discount=FLAGS.discount,
      replay_capacity=FLAGS.replay_capacity,
      min_replay_size=FLAGS.min_replay_size,
      sgd_period=FLAGS.sgd_period,
      target_update_period=FLAGS.target_update_period,
      optimizer=optimizer,
      epsilon=FLAGS.epsilon,
      seed=FLAGS.seed,
  )

  num_episodes = FLAGS.num_episodes or getattr(env, 'bsuite_num_episodes')
  experiment.run(
      agent=agent,
      environment=env,
      num_episodes=num_episodes,
      verbose=FLAGS.verbose)

  return bsuite_id 
開發者ID:deepmind,項目名稱:bsuite,代碼行數:42,代碼來源:run.py

示例8: __init__

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def __init__(self, hidden_sizes: Sequence[int],
               action_spec: specs.DiscreteArray):
    super().__init__(name='policy_value_net')
    self._torso = snt.Sequential([
        snt.Flatten(),
        snt.nets.MLP(hidden_sizes, activate_final=True),
    ])
    self._policy_head = snt.Linear(action_spec.num_values)
    self._value_head = snt.Linear(1)
    self._action_dtype = action_spec.dtype 
開發者ID:deepmind,項目名稱:bsuite,代碼行數:12,代碼來源:agent.py

示例9: mnist

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def mnist(layers,  # pylint: disable=invalid-name
          activation="sigmoid",
          batch_size=128,
          mode="train"):
  """Mnist classification with a multi-layer perceptron."""

  if activation == "sigmoid":
    activation_op = tf.sigmoid
  elif activation == "relu":
    activation_op = tf.nn.relu
  else:
    raise ValueError("{} activation not supported".format(activation))

  # Data.
  data = mnist_dataset.load_mnist()
  data = getattr(data, mode)
  images = tf.constant(data.images, dtype=tf.float32, name="MNIST_images")
  images = tf.reshape(images, [-1, 28, 28, 1])
  labels = tf.constant(data.labels, dtype=tf.int64, name="MNIST_labels")

  # Network.
  mlp = snt.nets.MLP(list(layers) + [10],
                     activation=activation_op,
                     initializers=_nn_initializers)
  network = snt.Sequential([snt.BatchFlatten(), mlp])

  def build():
    indices = tf.random_uniform([batch_size], 0, data.num_examples, tf.int64)
    batch_images = tf.gather(images, indices)
    batch_labels = tf.gather(labels, indices)
    output = network(batch_images)
    return _xent_loss(output, batch_labels)

  return build 
開發者ID:deepmind,項目名稱:learning-to-learn,代碼行數:36,代碼來源:problems.py

示例10: __init__

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def __init__(self, init_with_true_state=False, model='2lstm', **unused_kwargs):

        self.placeholders = {'o': tf.placeholder('float32', [None, None, 24, 24, 3], 'observations'),
                     'a': tf.placeholder('float32', [None, None, 3], 'actions'),
                     's': tf.placeholder('float32', [None, None, 3], 'states'),
                     'keep_prob': tf.placeholder('float32')}
        self.pred_states = None
        self.init_with_true_state = init_with_true_state
        self.model = model

        # build models
        # <-- observation
        self.encoder = snt.Sequential([
            snt.nets.ConvNet2D([16, 32, 64], [[3, 3]], [2], [snt.SAME], activate_final=True, name='encoder/convnet'),
            snt.BatchFlatten(),
            lambda x: tf.nn.dropout(x, self.placeholders['keep_prob']),
            snt.Linear(128, name='encoder/Linear'),
            tf.nn.relu,
        ])

        # <-- action
        if self.model == '2lstm':
            self.rnn1 = snt.LSTM(512)
            self.rnn2 = snt.LSTM(512)
        if self.model == '2gru':
            self.rnn1 = snt.GRU(512)
            self.rnn2 = snt.GRU(512)
        elif self.model == 'ff':
            self.ff_lstm_replacement = snt.Sequential([
                snt.Linear(512),
                tf.nn.relu,
                snt.Linear(512),
                tf.nn.relu])

        self.belief_decoder = snt.Sequential([
            snt.Linear(256),
            tf.nn.relu,
            snt.Linear(256),
            tf.nn.relu,
            snt.Linear(3)
        ]) 
開發者ID:tu-rbo,項目名稱:differentiable-particle-filters,代碼行數:43,代碼來源:rnn.py

示例11: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def _build(self, attribute_value):
        tf.summary.histogram('cont_attribute_value_histogram', attribute_value)
        embedding = snt.Sequential([
            snt.nets.MLP([self._attr_embedding_dim] * 3, activate_final=True, use_dropout=True),
            snt.LayerNorm(),
        ])(tf.cast(attribute_value, dtype=tf.float32))
        tf.summary.histogram('cont_embedding_histogram', embedding)
        return embedding 
開發者ID:graknlabs,項目名稱:kglib,代碼行數:10,代碼來源:attribute.py

示例12: make_mlp_model

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def make_mlp_model(latent_size=16, num_layers=2):
    """Instantiates a new MLP, followed by LayerNorm.

    The parameters of each new MLP are not shared with others generated by
    this function.

    Returns:
      A Sonnet module which contains the MLP and LayerNorm.
    """
    return snt.Sequential([
        snt.nets.MLP([latent_size] * num_layers, activate_final=True),
        snt.LayerNorm()
    ]) 
開發者ID:graknlabs,項目名稱:kglib,代碼行數:15,代碼來源:core.py

示例13: _edge_model

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def _edge_model(self):
        return snt.Sequential([self._role_embedder,
                               snt.nets.MLP([self._latent_size] * self._num_layers, activate_final=True),
                               snt.LayerNorm()]) 
開發者ID:graknlabs,項目名稱:kglib,代碼行數:6,代碼來源:core.py

示例14: _node_model

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def _node_model(self):
        return snt.Sequential([self._thing_embedder,
                               snt.nets.MLP([self._latent_size] * self._num_layers, activate_final=True),
                               snt.LayerNorm()]) 
開發者ID:graknlabs,項目名稱:kglib,代碼行數:6,代碼來源:core.py

示例15: _embed

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Sequential [as 別名]
def _embed(self, inpt):
        flatten = snt.BatchFlatten()
        mlp = MLP(self._n_hidden, n_out=self._n_param)
        seq = snt.Sequential([flatten, mlp])
        return seq(inpt) 
開發者ID:akosiorek,項目名稱:attend_infer_repeat,代碼行數:7,代碼來源:modules.py


注:本文中的sonnet.Sequential方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。