當前位置: 首頁>>代碼示例>>Python>>正文


Python sonnet.Linear方法代碼示例

本文整理匯總了Python中sonnet.Linear方法的典型用法代碼示例。如果您正苦於以下問題:Python sonnet.Linear方法的具體用法?Python sonnet.Linear怎麽用?Python sonnet.Linear使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sonnet的用法示例。


在下文中一共展示了sonnet.Linear方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _head

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _head(self, policy_input, heading, xy, target_xy):
    """Build the head of the agent: linear policy and value function, and pass
    the auxiliary outputs through.
    """

    # Linear policy and value function.
    policy_logits = snt.Linear(
        self._num_actions, name='policy_logits')(policy_input)
    baseline = tf.squeeze(snt.Linear(1, name='baseline')(policy_input), axis=-1)

    # Sample an action from the policy.
    new_action = tf.multinomial(
        policy_logits, num_samples=1, output_dtype=tf.int32)
    new_action = tf.squeeze(new_action, 1, name='new_action')

    return AgentOutput(
        new_action, policy_logits, baseline, heading, xy, target_xy) 
開發者ID:deepmind,項目名稱:streetlearn,代碼行數:19,代碼來源:goal_nav_agent.py

示例2: __init__

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def __init__(self,
               output_sizes,
               regularizers=None,
               initializers=None,
               custom_getter=None,
               activation=_NONLINEARITY,
               activate_final=False,
               name='MLP'):

    super(MLPManualReg, self).__init__(custom_getter=custom_getter, name=name)

    self._output_sizes = output_sizes
    self._activation = activation
    self._activate_final = activate_final

    with self._enter_variable_scope():
      self._layers = [snt.Linear(self._output_sizes[i],
                                 name='linear_{}'.format(i),
                                 initializers=initializers,
                                 regularizers=regularizers,
                                 custom_getter=custom_getter,
                                 use_bias=True)
                      for i in range(len(self._output_sizes))] 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:25,代碼來源:autoencoder_mnist.py

示例3: decoder

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def decoder(self, inputs):
    with tf.variable_scope("decoder"):
      l2_regularizer = tf.contrib.layers.l2_regularizer(self._l2_penalty_weight)
      orthogonality_reg = get_orthogonality_regularizer(
          self._orthogonality_penalty_weight)
      initializer = tf.initializers.glorot_uniform(dtype=self._float_dtype)
      # 2 * embedding_dim, because we are returning means and variances
      decoder_module = snt.Linear(
          2 * self.embedding_dim,
          use_bias=False,
          regularizers={"w": l2_regularizer},
          initializers={"w": initializer},
      )
      outputs = snt.BatchApply(decoder_module)(inputs)
      self._orthogonality_reg = orthogonality_reg(decoder_module.w)
      return outputs 
開發者ID:deepmind,項目名稱:leo,代碼行數:18,代碼來源:model.py

示例4: testVerifiableModelWrapperResnet

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def testVerifiableModelWrapperResnet(self):
    def _build(z0, is_training=False):  # pylint: disable=unused-argument
      input_size = np.prod(z0.shape[1:])
      # We make a resnet-like structure.
      z = snt.Linear(input_size)(z0)
      z_left = tf.nn.relu(z)
      z_left = snt.Linear(input_size)(z_left)
      z = z_left + z0
      return snt.Linear(2)(z)

    z = tf.constant([[1, 2, 3, 4]], dtype=tf.float32)
    wrapper = ibp.VerifiableModelWrapper(_build)
    logits = wrapper(z)
    self.assertLen(wrapper.input_wrappers, 1)
    self.assertLen(wrapper.modules, 5)
    # Check input has fanout 2, as it is the start of the resnet block.
    self.assertEqual(wrapper.fanout_of(wrapper.input_wrappers[0]), 2)
    for module in wrapper.modules:
      self.assertEqual(wrapper.fanout_of(module), 1)
    # Check propagation.
    self._propagation_test(wrapper, z, logits) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:23,代碼來源:model_test.py

示例5: testFCIntervalBounds

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def testFCIntervalBounds(self):
    m = snt.Linear(1, initializers={
        'w': tf.constant_initializer(1.),
        'b': tf.constant_initializer(2.),
    })
    z = tf.constant([[1, 2, 3]], dtype=tf.float32)
    m(z)  # Connect to create weights.
    m = ibp.LinearFCWrapper(m)
    input_bounds = ibp.IntervalBounds(z - 1., z + 1.)
    output_bounds = m.propagate_bounds(input_bounds)
    with self.test_session() as sess:
      sess.run(tf.global_variables_initializer())
      l, u = sess.run([output_bounds.lower, output_bounds.upper])
      l = l.item()
      u = u.item()
      self.assertAlmostEqual(5., l)
      self.assertAlmostEqual(11., u) 
開發者ID:deepmind,項目名稱:interval-bound-propagation,代碼行數:19,代碼來源:bounds_test.py

示例6: custom_build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def custom_build(inputs, is_training, keep_prob):
  x_inputs = tf.reshape(inputs, [-1, 28, 28, 1])
  """A custom build method to wrap into a sonnet Module."""
  outputs = snt.Conv2D(output_channels=32, kernel_shape=4, stride=2)(x_inputs)
  outputs = snt.BatchNorm()(outputs, is_training=is_training)
  outputs = tf.nn.relu(outputs)
  outputs = tf.nn.max_pool(outputs, ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1], padding='SAME')
  outputs = snt.Conv2D(output_channels=64, kernel_shape=4, stride=2)(outputs)
  outputs = snt.BatchNorm()(outputs, is_training=is_training)
  outputs = tf.nn.relu(outputs)
  outputs = tf.nn.max_pool(outputs, ksize=[1, 2, 2, 1],
                           strides=[1, 2, 2, 1], padding='SAME')
  outputs = snt.Conv2D(output_channels=1024, kernel_shape=1, stride=1)(outputs)
  outputs = snt.BatchNorm()(outputs, is_training=is_training)
  outputs = tf.nn.relu(outputs)
  outputs = snt.BatchFlatten()(outputs)
  outputs = tf.nn.dropout(outputs, keep_prob=keep_prob)
  outputs = snt.Linear(output_size=10)(outputs)
#  _activation_summary(outputs)
  return outputs 
開發者ID:normanheckscher,項目名稱:mnist-multi-gpu,代碼行數:23,代碼來源:mnist_multi_gpu_sonnet.py

示例7: custom_build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def custom_build(self, inputs):
        """A custom build method to wrap into a sonnet Module."""
        outputs = snt.Conv2D(output_channels=16, kernel_shape=[7, 7], stride=[1, 1])(inputs)
        outputs = tf.nn.relu(outputs)
        outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[1, 2])(outputs)
        outputs = tf.nn.relu(outputs)
        outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[1, 2])(outputs)
        outputs = tf.nn.relu(outputs)
        outputs = snt.Conv2D(output_channels=16, kernel_shape=[5, 5], stride=[2, 2])(outputs)
        outputs = tf.nn.relu(outputs)
        outputs = tf.nn.dropout(outputs,  self.placeholders['keep_prob'])
        outputs = snt.BatchFlatten()(outputs)
        outputs = snt.Linear(128)(outputs)
        outputs = tf.nn.relu(outputs)

        return outputs 
開發者ID:tu-rbo,項目名稱:differentiable-particle-filters,代碼行數:18,代碼來源:dpf_kitti.py

示例8: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _build(self, inputs):
        """
        Perform dense/fully connected layer with a activation function
        """
        self._layer = snt.Linear(self._output_size, self._add_bias, self._initializers,
                                 self._partitioners, self._regularizers, name='LinearWx')
        output = self._layer(inputs)
        # Add GraphKeys
        if self._add_bias:
            tf.add_to_collection(GraphKeys.BIASES, self._layer.b)

        tf.add_to_collection(GraphKeys.WEIGHTS, self._layer.w)
        tf.add_to_collection(GraphKeys.PRE_ACTIVATIONS, output)

        if self._activation_fn is None or self._activation_fn == tf.identity:
            return output

        output = self._activation_fn(output)

        # Add to GraphKeys for activation output
        tf.add_to_collection(GraphKeys.ACTIVATIONS, output)
        return output

    # Below are just convenience to access properties from the underlying layer 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:26,代碼來源:layers.py

示例9: _torso

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _torso(self, input_):
    """Processing of all the visual and language inputs to the LSTM core."""

    # Extract the inputs
    last_action, env_output = input_
    last_reward, _, _, observation = env_output
    frame = observation[self._idx_frame]
    goal = observation[self._idx_goal]
    goal = tf.to_float(goal)

    # Convert to image to floats and normalise.
    frame = tf.to_float(frame)
    frame = snt.FlattenTrailingDimensions(dim_from=3)(frame)
    frame /= 255.0

    # Feed image through convnet.
    with tf.variable_scope('convnet'):
      # Convolutional layers.
      conv_out = self._convnet(frame)
      # Fully connected layer.
      conv_out = snt.BatchFlatten()(conv_out)
      conv_out = snt.Linear(256)(conv_out)
      conv_out = tf.nn.relu(conv_out)

    # Concatenate outputs of the visual and instruction pathways.
    if self._feed_action_and_reward:
      # Append clipped last reward and one hot last action.
      tf.logging.info('Append last reward clipped to: %f', self._max_reward)
      clipped_last_reward = tf.expand_dims(
          tf.clip_by_value(last_reward, -self._max_reward, self._max_reward),
          -1)
      tf.logging.info('Append last action (one-hot of %d)', self._num_actions)
      one_hot_last_action = tf.one_hot(last_action, self._num_actions)
      tf.logging.info('Append goal:')
      tf.logging.info(goal)
      action_and_reward = tf.concat([clipped_last_reward, one_hot_last_action],
                                    axis=1)
    else:
      action_and_reward = tf.constant([0], dtype=tf.float32)
    return conv_out, action_and_reward, goal 
開發者ID:deepmind,項目名稱:streetlearn,代碼行數:42,代碼來源:goal_nav_agent.py

示例10: _head

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _head(self, core_output):
    """Build the head of the agent: linear policy and value function."""
    policy_logits = snt.Linear(
        self._num_actions, name='policy_logits')(
            core_output)
    baseline = tf.squeeze(snt.Linear(1, name='baseline')(core_output), axis=-1)

    # Sample an action from the policy.
    new_action = tf.multinomial(
        policy_logits, num_samples=1, output_dtype=tf.int32)
    new_action = tf.squeeze(new_action, 1, name='new_action')

    return AgentOutput(new_action, policy_logits, baseline) 
開發者ID:deepmind,項目名稱:streetlearn,代碼行數:15,代碼來源:plain_agent.py

示例11: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _build(self, inputs):

    if FLAGS.l2_reg:
      regularizers = {'w': lambda w: FLAGS.l2_reg*tf.nn.l2_loss(w),
                      'b': lambda w: FLAGS.l2_reg*tf.nn.l2_loss(w),}
    else:
      regularizers = None

    reshape = snt.BatchReshape([28, 28, 1])

    conv = snt.Conv2D(2, 5, padding=snt.SAME, regularizers=regularizers)
    act = _NONLINEARITY(conv(reshape(inputs)))

    pool = tf.nn.pool(act, window_shape=(2, 2), pooling_type=_POOL,
                      padding=snt.SAME, strides=(2, 2))

    conv = snt.Conv2D(4, 5, padding=snt.SAME, regularizers=regularizers)
    act = _NONLINEARITY(conv(pool))

    pool = tf.nn.pool(act, window_shape=(2, 2), pooling_type=_POOL,
                      padding=snt.SAME, strides=(2, 2))

    flatten = snt.BatchFlatten()(pool)

    linear = snt.Linear(32, regularizers=regularizers)(flatten)

    return snt.Linear(10, regularizers=regularizers)(linear) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:29,代碼來源:classifier_mnist.py

示例12: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _build(self, x):
    x = tf.to_float(x)
    initializers={"w": tf.truncated_normal_initializer(stddev=0.01)}
    lin = snt.Linear(self.size, use_bias=False, initializers=initializers)
    z = lin(x)

    scale = tf.constant(1., dtype=tf.float32)
    offset = tf.get_variable(
        "b",
        shape=[1, z.shape.as_list()[1]],
        initializer=tf.truncated_normal_initializer(stddev=0.1),
        dtype=tf.float32
    )

    mean, var = tf.nn.moments(z, [0], keep_dims=True)
    z = ((z - mean) * tf.rsqrt(var + 1e-6)) * scale + offset

    x_p = self.activation_fn(z)

    return z, x_p

  # This needs to work by string name sadly due to how the variable replace
  # works and would also work even if the custom getter approuch was used.
  # This is verbose, but it should atleast be clear as to what is going on.
  # TODO(lmetz) a better way to do this (the next 3 functions:
  #    _raw_name, w(), b() ) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:28,代碼來源:common.py

示例13: __init__

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def __init__(self, size, use_bias=True, init_const_mag=True):
    self.size = size
    self.use_bias = use_bias
    self.init_const_mag = init_const_mag
    super(Linear, self).__init__(name="commonLinear") 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:7,代碼來源:common.py

示例14: _build

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def _build(self, h):
    with tf.device(self.device):
      mod = snt.Linear(self.num_grad_channels)
      ret = snt.BatchApply(mod)(h)
      # return as [num_grad_channels] x [bs] x [num units]
      return tf.transpose(ret, perm=self.perm) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:8,代碼來源:more_local_weight_update.py

示例15: bias_readout

# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import Linear [as 別名]
def bias_readout(self, h):
    with tf.device(self.remote_device):
      mod = snt.Linear(1, name='bias_readout')
      ret = snt.BatchApply(mod)(h)
      return tf.squeeze(ret, 2) 
開發者ID:itsamitgoel,項目名稱:Gun-Detector,代碼行數:7,代碼來源:more_local_weight_update.py


注:本文中的sonnet.Linear方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。