本文整理匯總了Python中sonnet.BatchNorm方法的典型用法代碼示例。如果您正苦於以下問題:Python sonnet.BatchNorm方法的具體用法?Python sonnet.BatchNorm怎麽用?Python sonnet.BatchNorm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sonnet
的用法示例。
在下文中一共展示了sonnet.BatchNorm方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _build(self, inputs, is_training):
"""Connects the module to inputs.
Args:
inputs: Inputs to the Unit3D component.
is_training: whether to use training mode for snt.BatchNorm (boolean).
Returns:
Outputs from the module.
"""
net = snt.Conv3D(output_channels=self._output_channels,
kernel_shape=self._kernel_shape,
stride=self._stride,
padding=snt.SAME,
use_bias=self._use_bias)(inputs)
if self._use_batch_norm:
bn = snt.BatchNorm()
net = bn(net, is_training=is_training, test_local_stats=False)
if self._activation_fn is not None:
net = self._activation_fn(net)
return net
示例2: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _build(self, inputs, is_training):
"""Connects the module to inputs.
Args:
inputs: Inputs to the Unit3D component.
is_training: whether to use training mode for snt.BatchNorm (boolean).
Returns:
Outputs from the module.
"""
net = snt.Conv3D(output_channels=self._output_channels,
kernel_shape=self._kernel_shape,
stride=self._stride,
padding=snt.SAME,
use_bias=self._use_bias)(inputs)
if self._use_batch_norm:
bn = snt.BatchNorm()
#################### Warning batchnorm is hard coded to is_training=False #################
# net = bn(net, is_training=is_training, test_local_stats=False)
net = bn(net, is_training=False, test_local_stats=False)
if self._activation_fn is not None:
net = self._activation_fn(net)
return net
示例3: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _build(self, inputs, is_training):
"""Connects the module to inputs.
Args:
inputs: Inputs to the Unit3Dtf component.
is_training: whether to use training mode for snt.BatchNorm (boolean).
Returns:
Outputs from the module.
"""
net = snt.Conv3D(
output_channels=self._output_channels,
kernel_shape=self._kernel_shape,
stride=self._stride,
padding=snt.SAME,
use_bias=self._use_bias)(inputs)
if self._use_batch_norm:
bn = snt.BatchNorm()
net = bn(net, is_training=is_training, test_local_stats=False)
if self._activation_fn is not None:
net = self._activation_fn(net)
return net
示例4: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _build(self, x):
# x is [units, bs, 1]
net = tf.transpose(x, [1, 0, 2]) # now [bs x units x 1]
channels = x.shape.as_list()[2]
mod = snt.Conv1D(output_channels=channels, kernel_shape=[3])
net = mod(net)
net = snt.BatchNorm(axis=[0, 1])(net, is_training=False)
net = tf.nn.relu(net)
mod = snt.Conv1D(output_channels=channels, kernel_shape=[3])
net = mod(net)
net = snt.BatchNorm(axis=[0, 1])(net, is_training=False)
net = tf.nn.relu(net)
to_concat = tf.transpose(net, [1, 0, 2])
if self.add:
return x + to_concat
else:
return tf.concat([x, to_concat], 2)
示例5: custom_build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def custom_build(inputs, is_training, keep_prob):
x_inputs = tf.reshape(inputs, [-1, 28, 28, 1])
"""A custom build method to wrap into a sonnet Module."""
outputs = snt.Conv2D(output_channels=32, kernel_shape=4, stride=2)(x_inputs)
outputs = snt.BatchNorm()(outputs, is_training=is_training)
outputs = tf.nn.relu(outputs)
outputs = tf.nn.max_pool(outputs, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
outputs = snt.Conv2D(output_channels=64, kernel_shape=4, stride=2)(outputs)
outputs = snt.BatchNorm()(outputs, is_training=is_training)
outputs = tf.nn.relu(outputs)
outputs = tf.nn.max_pool(outputs, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
outputs = snt.Conv2D(output_channels=1024, kernel_shape=1, stride=1)(outputs)
outputs = snt.BatchNorm()(outputs, is_training=is_training)
outputs = tf.nn.relu(outputs)
outputs = snt.BatchFlatten()(outputs)
outputs = tf.nn.dropout(outputs, keep_prob=keep_prob)
outputs = snt.Linear(output_size=10)(outputs)
# _activation_summary(outputs)
return outputs
示例6: __init__
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def __init__(self, axis=None, offset=True, scale=False,
decay_rate=0.999, eps=1e-3, initializers=None,
partitioners=None, regularizers=None,
update_ops_collection=None, name='batch_norm'):
"""Constructs a BatchNorm module. See original code for more details."""
super(BatchNorm, self).__init__(
axis=axis, offset=offset, scale=scale, decay_rate=decay_rate, eps=eps,
initializers=initializers, partitioners=partitioners,
regularizers=regularizers, fused=False,
update_ops_collection=update_ops_collection, name=name)
示例7: _build_statistics
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _build_statistics(self, input_batch, axis, use_batch_stats, stat_dtype):
"""Builds the statistics part of the graph when using moving variance."""
self._mean, self._variance = super(BatchNorm, self)._build_statistics(
input_batch, axis, use_batch_stats, stat_dtype)
return self._mean, self._variance
示例8: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _build(self, input_batch, is_training=True, test_local_stats=False,
reuse=False):
"""Connects the BatchNorm module into the graph.
Args:
input_batch: A Tensor of arbitrary dimension. By default, the final
dimension is not reduced over when computing the minibatch statistics.
is_training: A boolean to indicate if the module should be connected in
training mode, meaning the moving averages are updated. Can be a Tensor.
test_local_stats: A boolean to indicate if the statistics should be from
the local batch. When is_training is True, test_local_stats is not used.
reuse: If True, the statistics computed by previous call to _build
are used and is_training is ignored. Otherwise, behaves like a normal
batch normalization layer.
Returns:
A tensor with the same shape as `input_batch`.
Raises:
ValueError: If `axis` is not valid for the
input shape or has negative entries.
"""
if reuse:
self._ensure_is_connected()
return tf.nn.batch_normalization(
input_batch, self._mean, self._variance, self._beta, self._gamma,
self._eps, name='batch_norm')
else:
return super(BatchNorm, self)._build(input_batch, is_training,
test_local_stats=test_local_stats)
示例9: _inputs_for_observed_module
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _inputs_for_observed_module(self, subgraph):
"""Extracts input tensors from a connected Sonnet module.
This default implementation supports common layer types, but should be
overridden if custom layer types are to be supported.
Args:
subgraph: `snt.ConnectedSubGraph` specifying the Sonnet module being
connected, and its inputs and outputs.
Returns:
List of input tensors, or None if not a supported Sonnet module.
"""
m = subgraph.module
# Only support a few operations for now.
if not (isinstance(m, snt.BatchReshape) or
isinstance(m, snt.Linear) or
isinstance(m, snt.Conv1D) or
isinstance(m, snt.Conv2D) or
isinstance(m, snt.BatchNorm) or
isinstance(m, layers.ImageNorm)):
return None
if isinstance(m, snt.BatchNorm):
return subgraph.inputs['input_batch'],
else:
return subgraph.inputs['inputs'],
示例10: _wrapper_for_observed_module
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _wrapper_for_observed_module(self, subgraph):
"""Creates a wrapper for a connected Sonnet module.
This default implementation supports common layer types, but should be
overridden if custom layer types are to be supported.
Args:
subgraph: `snt.ConnectedSubGraph` specifying the Sonnet module being
connected, and its inputs and outputs.
Returns:
`ibp.VerifiableWrapper` for the Sonnet module.
"""
m = subgraph.module
if isinstance(m, snt.BatchReshape):
shape = subgraph.outputs.get_shape()[1:].as_list()
return verifiable_wrapper.BatchReshapeWrapper(m, shape)
elif isinstance(m, snt.Linear):
return verifiable_wrapper.LinearFCWrapper(m)
elif isinstance(m, snt.Conv1D):
return verifiable_wrapper.LinearConv1dWrapper(m)
elif isinstance(m, snt.Conv2D):
return verifiable_wrapper.LinearConv2dWrapper(m)
elif isinstance(m, layers.ImageNorm):
return verifiable_wrapper.ImageNormWrapper(m)
else:
assert isinstance(m, snt.BatchNorm)
return verifiable_wrapper.BatchNormWrapper(m)
示例11: combine_with_batchnorm
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def combine_with_batchnorm(w, b, batchnorm_module):
"""Combines a linear layer and a batch norm into a single linear layer.
Calculates the weights and biases of the linear layer formed by
applying the specified linear layer followed by the batch norm.
Note that, in the case of a convolution, the returned bias will have
spatial dimensions.
Args:
w: 2D tensor of shape (input_size, output_size) or 4D tensor of shape
(kernel_height, kernel_width, input_channels, output_channels) containing
weights for the linear layer.
b: 1D tensor of shape (output_size) or (output_channels) containing biases
for the linear layer, or `None` if no bias.
batchnorm_module: `snt.BatchNorm` module.
Returns:
w: 2D tensor of shape (input_size, output_size) or 4D tensor of shape
(kernel_height, kernel_width, input_channels, output_channels) containing
weights for the combined layer.
b: 1D tensor of shape (output_size) or 3D tensor of shape
(output_height, output_width, output_channels) containing
biases for the combined layer.
"""
if b is None:
b = tf.zeros(dtype=w.dtype, shape=())
w_bn, b_bn = decode_batchnorm(batchnorm_module)
return w * w_bn, b * w_bn + b_bn
示例12: __init__
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def __init__(self, module):
if not isinstance(module, snt.BatchNorm):
raise ValueError('Cannot wrap {} with a BatchNormWrapper.'.format(
module))
super(BatchNormWrapper, self).__init__(module)
示例13: _propagate_through
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def _propagate_through(self, module, input_bounds):
if isinstance(module, layers.BatchNorm):
# This IBP-specific batch-norm implementation exposes stats recorded
# the most recent time the BatchNorm module was connected.
# These will be either the batch stats (e.g. if training) or the moving
# averages, depending on how the module was called.
mean = module.mean
variance = module.variance
epsilon = module.epsilon
scale = module.scale
bias = module.bias
else:
# This plain Sonnet batch-norm implementation only exposes the
# moving averages.
logging.warn('Sonnet BatchNorm module encountered: %s. '
'IBP will always use its moving averages, not the local '
'batch stats, even in training mode.', str(module))
mean = module.moving_mean
variance = module.moving_variance
epsilon = module._eps # pylint: disable=protected-access
try:
bias = module.beta
except snt.Error:
bias = None
try:
scale = module.gamma
except snt.Error:
scale = None
return input_bounds.apply_batch_norm(self, mean, variance,
scale, bias, epsilon)
示例14: compute_top_delta
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def compute_top_delta(self, z):
""" parameterization of topD. This converts the top level activation
to an error signal.
Args:
z: tf.Tensor
batch of final layer post activations
Returns
delta: tf.Tensor
the error signal
"""
s_idx = 0
with tf.variable_scope('compute_top_delta'), tf.device(self.remote_device):
# typically this takes [BS, length, input_channels],
# We are applying this such that we convolve over the batch dimension.
act = tf.expand_dims(tf.transpose(z, [1, 0]), 2) # [channels, BS, 1]
mod = snt.Conv1D(output_channels=self.top_delta_size, kernel_shape=[5])
act = mod(act)
act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
act = tf.nn.relu(act)
bs = act.shape.as_list()[0]
act = tf.transpose(act, [2, 1, 0])
act = snt.Conv1D(output_channels=bs, kernel_shape=[3])(act)
act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
act = tf.nn.relu(act)
act = snt.Conv1D(output_channels=bs, kernel_shape=[3])(act)
act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
act = tf.nn.relu(act)
act = tf.transpose(act, [2, 1, 0])
prev_act = act
for i in range(self.top_delta_layers):
mod = snt.Conv1D(output_channels=self.top_delta_size, kernel_shape=[3])
act = mod(act)
act = snt.BatchNorm(axis=[0, 1])(act, is_training=False)
act = tf.nn.relu(act)
prev_act = act
mod = snt.Conv1D(output_channels=self.delta_dim, kernel_shape=[3])
act = mod(act)
# [bs, feature_channels, delta_channels]
act = tf.transpose(act, [1, 0, 2])
return act
示例15: decode_batchnorm
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchNorm [as 別名]
def decode_batchnorm(batchnorm_module):
"""Calculates the neuron-wise multipliers and biases of the batch norm layer.
Note that, in the case of a convolution, the returned bias will have
spatial dimensions.
Args:
batchnorm_module: `snt.BatchNorm` module.
Returns:
w: 1D tensor of shape (output_size) or 3D tensor of shape
(output_height, output_width, output_channels) containing
neuron-wise multipliers for the batch norm layer.
b: 1D tensor of shape (output_size) or 3D tensor of shape
(output_height, output_width, output_channels) containing
neuron-wise biases for the batch norm layer.
"""
if isinstance(batchnorm_module, layers.BatchNorm):
mean = batchnorm_module.mean
variance = batchnorm_module.variance
variance_epsilon = batchnorm_module.epsilon
scale = batchnorm_module.scale
offset = batchnorm_module.bias
else:
assert isinstance(batchnorm_module, snt.BatchNorm)
mean = batchnorm_module.moving_mean
variance = batchnorm_module.moving_variance
variance_epsilon = batchnorm_module._eps # pylint: disable=protected-access
try:
scale = batchnorm_module.gamma
except snt.Error:
scale = None
try:
offset = batchnorm_module.beta
except snt.Error:
offset = None
w = tf.rsqrt(variance + variance_epsilon)
if scale is not None:
w *= scale
b = -w * mean
if offset is not None:
b += offset
# Batchnorm vars have a redundant leading dim.
w = tf.squeeze(w, axis=0)
b = tf.squeeze(b, axis=0)
return w, b