本文整理匯總了Python中sonnet.BatchApply方法的典型用法代碼示例。如果您正苦於以下問題:Python sonnet.BatchApply方法的具體用法?Python sonnet.BatchApply怎麽用?Python sonnet.BatchApply使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sonnet
的用法示例。
在下文中一共展示了sonnet.BatchApply方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: unroll
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def unroll(self, actions, env_outputs, core_state):
"""Manual implementation of the network unroll."""
_, _, done, _ = env_outputs
torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs))
# Note, in this implementation we can't use CuDNN RNN to speed things up due
# to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be
# changed to implement snt.LSTMCell).
initial_core_state = self._core.zero_state(tf.shape(actions)[1], tf.float32)
core_output_list = []
for input_, d in zip(tf.unstack(torso_outputs), tf.unstack(done)):
# If the episode ended, the core state should be reset before the next.
core_state = nest.map_structure(
functools.partial(tf.where, d), initial_core_state, core_state)
core_output, core_state = self._core(input_, core_state)
core_output_list.append(core_output)
return snt.BatchApply(self._head)(tf.stack(core_output_list)), core_state
示例2: weighted_softmax
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def weighted_softmax(activations, strengths, strengths_op):
"""Returns softmax over activations multiplied by positive strengths.
Args:
activations: A tensor of shape `[batch_size, num_heads, memory_size]`, of
activations to be transformed. Softmax is taken over the last dimension.
strengths: A tensor of shape `[batch_size, num_heads]` containing strengths to
multiply by the activations prior to the softmax.
strengths_op: An operation to transform strengths before softmax.
Returns:
A tensor of same shape as `activations` with weighted softmax applied.
"""
transformed_strengths = tf.expand_dims(strengths_op(strengths), -1)
sharp_activations = activations * transformed_strengths
softmax = snt.BatchApply(module_or_op=tf.nn.softmax)
return softmax(sharp_activations)
示例3: testValues
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def testValues(self):
batch_size = 5
num_heads = 3
memory_size = 7
activations_data = np.random.randn(batch_size, num_heads, memory_size)
weights_data = np.ones((batch_size, num_heads))
activations = tf.placeholder(tf.float32,
[batch_size, num_heads, memory_size])
weights = tf.placeholder(tf.float32, [batch_size, num_heads])
# Run weighted softmax with identity placed on weights. Output should be
# equal to a standalone softmax.
observed = addressing.weighted_softmax(activations, weights, tf.identity)
expected = snt.BatchApply(
module_or_op=tf.nn.softmax, name='BatchSoftmax')(activations)
with self.test_session() as sess:
observed = sess.run(
observed,
feed_dict={activations: activations_data,
weights: weights_data})
expected = sess.run(expected, feed_dict={activations: activations_data})
self.assertAllClose(observed, expected)
示例4: relation_network
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def relation_network(self, inputs):
with tf.variable_scope("relation_network"):
regularizer = tf.contrib.layers.l2_regularizer(self._l2_penalty_weight)
initializer = tf.initializers.glorot_uniform(dtype=self._float_dtype)
relation_network_module = snt.nets.MLP(
[2 * self._num_latents] * 3,
use_bias=False,
regularizers={"w": regularizer},
initializers={"w": initializer},
)
total_num_examples = self.num_examples_per_class*self.num_classes
inputs = tf.reshape(inputs, [total_num_examples, self._num_latents])
left = tf.tile(tf.expand_dims(inputs, 1), [1, total_num_examples, 1])
right = tf.tile(tf.expand_dims(inputs, 0), [total_num_examples, 1, 1])
concat_codes = tf.concat([left, right], axis=-1)
outputs = snt.BatchApply(relation_network_module)(concat_codes)
outputs = tf.reduce_mean(outputs, axis=1)
# 2 * latents, because we are returning means and variances of a Gaussian
outputs = tf.reshape(outputs, [self.num_classes,
self.num_examples_per_class,
2 * self._num_latents])
return outputs
示例5: decoder
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def decoder(self, inputs):
with tf.variable_scope("decoder"):
l2_regularizer = tf.contrib.layers.l2_regularizer(self._l2_penalty_weight)
orthogonality_reg = get_orthogonality_regularizer(
self._orthogonality_penalty_weight)
initializer = tf.initializers.glorot_uniform(dtype=self._float_dtype)
# 2 * embedding_dim, because we are returning means and variances
decoder_module = snt.Linear(
2 * self.embedding_dim,
use_bias=False,
regularizers={"w": l2_regularizer},
initializers={"w": initializer},
)
outputs = snt.BatchApply(decoder_module)(inputs)
self._orthogonality_reg = orthogonality_reg(decoder_module.w)
return outputs
示例6: apply_increasing_monotonic_fn
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def apply_increasing_monotonic_fn(self, wrapper, fn, *args, **parameters):
if fn.__name__ in ('add', 'reduce_mean', 'reduce_sum', 'avg_pool'):
if self.vertices.shape.ndims == self.nominal.shape.ndims:
vertices_fn = fn
else:
vertices_fn = snt.BatchApply(fn, n_dims=2)
return SimplexBounds(
vertices_fn(self.vertices, *[bounds.vertices for bounds in args]),
fn(self.nominal, *[bounds.nominal for bounds in args]),
self.r)
elif fn.__name__ == 'quotient':
return SimplexBounds(
self.vertices / tf.expand_dims(parameters['denom'], axis=1),
fn(self.nominal),
self.r)
else:
return super(SimplexBounds, self).apply_increasing_monotonic_fn(
wrapper, fn, *args, **parameters)
示例7: measurement_update
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def measurement_update(self, encoding, particles, means, stds):
"""
Compute the likelihood of the encoded observation for each particle.
:param encoding: encoding of the observation
:param particles:
:param means:
:param stds:
:return: observation likelihood
"""
# prepare input (normalize particles poses and repeat encoding per particle)
particle_input = self.transform_particles_as_input(particles, means, stds)
encoding_input = tf.tile(encoding[:, tf.newaxis, :], [1, tf.shape(particles)[1], 1])
input = tf.concat([encoding_input, particle_input], axis=-1)
# estimate the likelihood of the encoded observation for each particle, remove last dimension
obs_likelihood = snt.BatchApply(self.obs_like_estimator)(input)[:, :, 0]
return obs_likelihood
示例8: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def _build(self, x, presence=None):
batch_size = int(x.shape[0])
h = snt.BatchApply(snt.Linear(self._n_dims))(x)
args = [self._n_heads, self._layer_norm, self._dropout_rate]
klass = SelfAttention
if self._n_inducing_points > 0:
args = [self._n_inducing_points] + args
klass = InducedSelfAttention
for _ in range(self._n_layers):
h = klass(*args)(h, presence)
z = snt.BatchApply(snt.Linear(self._n_output_dims))(h)
inducing_points = tf.get_variable(
'inducing_points', shape=[1, self._n_outputs, self._n_output_dims])
inducing_points = snt.TileByDim([0], [batch_size])(inducing_points)
return MultiHeadQKVAttention(self._n_heads)(inducing_points, z, z, presence)
示例9: unroll
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def unroll(self, actions, env_outputs, core_state):
_, _, done, _ = env_outputs
torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs))
# Note, in this implementation we can't use CuDNN RNN to speed things up due
# to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be
# changed to implement snt.LSTMCell).
initial_core_state = self._core.zero_state(tf.shape(actions)[1], tf.float32)
core_output_list = []
for input_, d in zip(tf.unstack(torso_outputs), tf.unstack(done)):
# If the episode ended, the core state should be reset before the next.
core_state = nest.map_structure(functools.partial(tf.where, d),
initial_core_state, core_state)
core_output, core_state = self._core(input_, core_state)
core_output_list.append(core_output)
return snt.BatchApply(self._head)(tf.stack(core_output_list)), core_state
示例10: unroll
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def unroll(self, actions, env_outputs, core_state):
"""Manual implementation of the network unroll."""
_, _, done, _ = env_outputs
torso_outputs = snt.BatchApply(self._torso)((actions, env_outputs))
tf.logging.info(torso_outputs)
conv_outputs, actions_and_rewards, goals = torso_outputs
# Note, in this implementation we can't use CuDNN RNN to speed things up due
# to the state reset. This can be XLA-compiled (LSTMBlockCell needs to be
# changed to implement snt.LSTMCell).
initial_core_state = self.initial_state(tf.shape(actions)[1])
policy_input_list = []
heading_output_list = []
xy_output_list = []
target_xy_output_list = []
for torso_output_, action_and_reward_, goal_, done_ in zip(
tf.unstack(conv_outputs),
tf.unstack(actions_and_rewards),
tf.unstack(goals),
tf.unstack(done)):
# If the episode ended, the core state should be reset before the next.
core_state = nest.map_structure(
functools.partial(tf.where, done_), initial_core_state, core_state)
core_output, core_state = self._core(
(torso_output_, action_and_reward_, goal_), core_state)
policy_input_list.append(core_output[0])
heading_output_list.append(core_output[1])
xy_output_list.append(core_output[2])
target_xy_output_list.append(core_output[3])
head_output = snt.BatchApply(self._head)(tf.stack(policy_input_list),
tf.stack(heading_output_list),
tf.stack(xy_output_list),
tf.stack(target_xy_output_list))
return head_output, core_state
示例11: _build
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def _build(self, h):
with tf.device(self.device):
mod = snt.Linear(self.num_grad_channels)
ret = snt.BatchApply(mod)(h)
# return as [num_grad_channels] x [bs] x [num units]
return tf.transpose(ret, perm=self.perm)
示例12: bias_readout
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def bias_readout(self, h):
with tf.device(self.remote_device):
mod = snt.Linear(1, name='bias_readout')
ret = snt.BatchApply(mod)(h)
return tf.squeeze(ret, 2)
示例13: to_delta_size
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def to_delta_size(self, h):
with tf.device(self.remote_device):
mod = snt.Linear(self.delta_dim)
return snt.BatchApply(mod)(h)
示例14: encoder
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def encoder(self, inputs):
with tf.variable_scope("encoder"):
after_dropout = tf.nn.dropout(inputs, rate=self.dropout_rate)
regularizer = tf.contrib.layers.l2_regularizer(self._l2_penalty_weight)
initializer = tf.initializers.glorot_uniform(dtype=self._float_dtype)
encoder_module = snt.Linear(
self._num_latents,
use_bias=False,
regularizers={"w": regularizer},
initializers={"w": initializer},
)
outputs = snt.BatchApply(encoder_module)(after_dropout)
return outputs
示例15: apply_conv1d
# 需要導入模塊: import sonnet [as 別名]
# 或者: from sonnet import BatchApply [as 別名]
def apply_conv1d(self, wrapper, w, b, padding, stride):
mapped_centres = tf.nn.conv1d(self.nominal, w,
padding=padding, stride=stride)
if self.vertices.shape.ndims == 3:
# `self.vertices` has no batch dimension; its shape is
# (num_vertices, input_length, embedding_channels).
mapped_vertices = tf.nn.conv1d(self.vertices, w,
padding=padding, stride=stride)
elif self.vertices.shape.ndims == 4:
# `self.vertices` has shape
# (batch_size, num_vertices, input_length, embedding_channels).
# Vertices are different for each example in the batch,
# e.g. for word perturbations.
mapped_vertices = snt.BatchApply(
lambda x: tf.nn.conv1d(x, w, padding=padding, stride=stride))(
self.vertices)
else:
raise ValueError('"vertices" must have either 3 or 4 dimensions.')
lb, ub = _simplex_bounds(mapped_vertices, mapped_centres, self.r, -3)
nominal_out = tf.nn.conv1d(self.nominal, w,
padding=padding, stride=stride)
if b is not None:
nominal_out += b
return relative_bounds.RelativeIntervalBounds(lb, ub, nominal_out)