本文整理匯總了Python中skvideo.io.vread方法的典型用法代碼示例。如果您正苦於以下問題:Python io.vread方法的具體用法?Python io.vread怎麽用?Python io.vread使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skvideo.io
的用法示例。
在下文中一共展示了io.vread方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __getitem__
# 需要導入模塊: from skvideo import io [as 別名]
# 或者: from skvideo.io import vread [as 別名]
def __getitem__(self, index):
annotation = self.annotation[index]
video_path = annotation['path']
clazz = annotation['class']
metadata = ffprobe(video_path)
duration = float(metadata["video"]["@duration"])
output_parameter = self.base_parameter
if self.clip_duration > 0:
sta = int(random() * max((duration - self.clip_duration), 0.))
output_parameter.update({
"-ss": "{}".format(sta),
"-t": "{}".format(min(self.clip_duration, duration - sta))
})
video_data = vread(video_path, outputdict=output_parameter)
if self.transform:
video_data = self.transform(video_data)
return video_data, clazz
示例2: GetFrames
# 需要導入模塊: from skvideo import io [as 別名]
# 或者: from skvideo.io import vread [as 別名]
def GetFrames(fileName, skipLength = 1, debug = False):
'''
Get video frames after skipping
Args:
fileName: full fileName to read
skipLength: Number of skips to perform
Returns:
Numpy array of frames
'''
if debug:
print "Started creating Frame List for file", fileName
try:
frameList = vread(fileName)
except:
return None
if debug:
print 'The video shape is', frameList.shape
print 'The array type is', frameList.dtype
frameList = frameList[range(0, frameList.shape[0], skipLength), :, :, :]
# Skip frames according to skipLength
if debug:
print 'The new shape after skipping', skipLength, 'is', frameList.shape
print "Finished creating Frame List"
return frameList
示例3: main
# 需要導入模塊: from skvideo import io [as 別名]
# 或者: from skvideo.io import vread [as 別名]
def main():
with tf.Session() as sess:
with tf.gfile.GFile('./1_checkpoint/16_bit_HE_to_HE_gt/lsmod_none.pb', 'rb') as f:
# with tf.gfile.GFile('./1_checkpoint/16_bit_HE_to_HE_gt/lsmod_256.pb', 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
sess.graph.as_default()
_ = tf.import_graph_def(graph_def)
in_image = sess.graph.get_tensor_by_name('import/input:0')
out_image = sess.graph.get_tensor_by_name('import/output:0')
if not os.path.isdir(TEST_RESULT_DIR):
os.makedirs(TEST_RESULT_DIR)
for i, file0 in enumerate(in_paths):
t0 = time.time()
# raw = vread(file0)
raw = np.load(file0)
if raw.shape[0] > MAX_FRAME:
print('Video with shape', raw.shape, 'is too large. Splitted.')
count = 0
begin_frame = 0
while begin_frame < raw.shape[0]:
t1 = time.time()
print('processing segment %d ...' % (count + 1),
new_filename = '.'.join(file0.split('.')[:-1] + [str(count)] + file0.split('.')[-1::]))
process_video(sess, in_image, out_image, new_filename, raw[begin_frame: begin_frame + MAX_FRAME, :, :, :])
count += 1
begin_frame += MAX_FRAME
print('\t{}s'.format(time.time() - t1))
else:
process_video(sess, in_image, out_image, file0, raw, out_file=train_ids[i] + '.mp4')
print(train_ids[i], '\t{}s'.format(time.time() - t0))
示例4: main
# 需要導入模塊: from skvideo import io [as 別名]
# 或者: from skvideo.io import vread [as 別名]
def main():
sess = tf.Session()
in_image = tf.placeholder(tf.float32, [None, TEST_CROP_FRAME, None, None, 4])
gt_image = tf.placeholder(tf.float32, [None, TEST_CROP_FRAME, None, None, 3])
out_image = network(in_image)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(CHECKPOINT_DIR)
if ckpt:
print('loaded ' + ckpt.model_checkpoint_path)
saver.restore(sess, ckpt.model_checkpoint_path)
if not os.path.isdir(TEST_RESULT_DIR):
os.makedirs(TEST_RESULT_DIR)
for i, file0 in enumerate(in_paths):
t0 = time.time()
# raw = vread(file0)
raw = np.load(file0)
if raw.shape[0] > MAX_FRAME:
print 'Video with shape', raw.shape, 'is too large. Splitted.'
count = 0
begin_frame = 0
while begin_frame < raw.shape[0]:
t1 = time.time()
print 'processing segment %d ...' % (count + 1),
new_filename = '.'.join(file0.split('.')[:-1] + [str(count)] + file0.split('.')[-1::])
process_video(sess, in_image, out_image, new_filename, raw[begin_frame: begin_frame + MAX_FRAME, :, :, :])
count += 1
begin_frame += MAX_FRAME
print '\t{}s'.format(time.time() - t1)
else:
process_video(sess, in_image, out_image, file0, raw, out_file=train_ids[i] + '.mp4')
print train_ids[i], '\t{}s'.format(time.time() - t0)
示例5: get_mask
# 需要導入模塊: from skvideo import io [as 別名]
# 或者: from skvideo.io import vread [as 別名]
def get_mask(model_options):
def _center_crop(frames):
y,x = frames.shape[1:3]
assert y >= 224 and x >= 224, 'Video too small!'
if y <= 430 and x <= 430:
# central crop
y_d = (y-224)//2
x_d = (x-224)//2
frames = frames[:,y_d:y_d+224,x_d:x_d+224,:]
return frames
with tf.Session() as sess:
with tf.device('/cpu:0'):
masks,images = model(model_options,sess)
print 'Reading Video..'
frames = vread(model_options['vid_file'])
print 'Video File: ',model_options['vid_file'], 'has shape ',frames.shape
length = frames.shape[0]
frames = _center_crop(frames)
frames = np.stack([frames[int(math.ceil(i*length/17)),:,:,:] for i in range(17)],0)
if frames.shape[1] != 224:
print 'Big sized video, resizing'
# make the larger side close to 420
f = max(frames.shape[1:3])/420
sh = (np.array(frames.shape[1:3])/f).astype(np.int32)
for i in range(frames.shape[0]):
frames[i] = (resize(frames[i],sh)*255).astype(np.uint8)
frames = _center_crop(frames)
print 'New shape: ',frames.shape
assert frames.shape[1:3] == (224,224), 'Bad aspect ratio!'
feed_dict = {}
feed_dict[images] = np.reshape(frames,(-1,224,224,3))
print 'Getting Mask...'
mask = sess.run(masks,feed_dict=feed_dict)
mask = mask[0]
gen_vis(mask,frames,model_options['vid_file'])