當前位置: 首頁>>代碼示例>>Python>>正文


Python space.Integer方法代碼示例

本文整理匯總了Python中skopt.space.Integer方法的典型用法代碼示例。如果您正苦於以下問題:Python space.Integer方法的具體用法?Python space.Integer怎麽用?Python space.Integer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skopt.space的用法示例。


在下文中一共展示了space.Integer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: bayes_search

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def bayes_search(self, **kwargs):
        """
        Grid search using skopt.BayesSearchCV

        Any parameters typically associated with BayesSearchCV (see
        Scikit-Optimize documentation) can be passed as keyword arguments to
        this function.

         The final dictionary used for the grid search is saved to
        `self.bayes_search_params`. This is updated with any parameters that
        are passed.

        Examples
        --------
        # Passing kwargs.
        self.bayes_search(search_spaces={'max_depth':Integer(4, 6)}, refit=True)
        """
        self.bayes_search_params.update(kwargs)
        self.bayes_search_ = BayesSearchCV(**self.bayes_search_params)
        self.bayes_search_.fit(self.x_train, self.transformed_y_train)
        return self.bayes_search_ 
開發者ID:df-foundation,項目名稱:pylift,代碼行數:23,代碼來源:base.py

示例2: test_dimension_name

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_dimension_name():
    notnames = [1, 1., True]
    for n in notnames:
        with pytest.raises(ValueError) as exc:
            real = Real(1, 2, name=n)
            assert("Dimension's name must be either string or"
                   "None." == exc.value.args[0])
    s = Space([Real(1, 2, name="a"),
               Integer(1, 100, name="b"),
               Categorical(["red, blue"], name="c")])
    assert s["a"] == (0, s.dimensions[0])
    assert s["a", "c"] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
    assert s[["a", "c"]] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
    assert s[("a", "c")] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
    assert s[0] == (0, s.dimensions[0])
    assert s[0, "c"] == [(0, s.dimensions[0]), (2, s.dimensions[2])]
    assert s[0, 2] == [(0, s.dimensions[0]), (2, s.dimensions[2])] 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:19,代碼來源:test_space.py

示例3: _knob_to_dimension

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def _knob_to_dimension(knob):
    if isinstance(knob, CategoricalKnob):
        return Categorical([x.value for x in knob.values])
    elif isinstance(knob, IntegerKnob):
        return Integer(knob.value_min, knob.value_max)
    elif isinstance(knob, FloatKnob):
        if knob.is_exp:
            # Avoid error in skopt when low/high are 0
            value_min = knob.value_min if knob.value_min != 0 else 1e-12
            value_max = knob.value_max if knob.value_max != 0 else 1e-12
            return Real(value_min, value_max, 'log-uniform')
        else:
            return Real(knob.value_min, knob.value_max, 'uniform')
    else:
        raise UnsupportedKnobError(knob.__class__) 
開發者ID:nginyc,項目名稱:rafiki,代碼行數:17,代碼來源:skopt.py

示例4: _fit_svc

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def _fit_svc(n_jobs=1, n_points=1, cv=None):
    """
    Utility function to fit a larger classification task with SVC
    """

    X, y = make_classification(n_samples=1000, n_features=20, n_redundant=0,
                               n_informative=18, random_state=1,
                               n_clusters_per_class=1)

    opt = BayesSearchCV(
        SVC(),
        {
            'C': Real(1e-3, 1e+3, prior='log-uniform'),
            'gamma': Real(1e-3, 1e+1, prior='log-uniform'),
            'degree': Integer(1, 3),
        },
        n_jobs=n_jobs, n_iter=11, n_points=n_points, cv=cv,
        random_state=42,
    )

    opt.fit(X, y)
    assert opt.score(X, y) > 0.9

    opt2 = BayesSearchCV(
        SVC(),
        {
            'C': Real(1e-3, 1e+3, prior='log-uniform'),
            'gamma': Real(1e-3, 1e+1, prior='log-uniform'),
            'degree': Integer(1, 3),
        },
        n_jobs=n_jobs, n_iter=11, n_points=n_points, cv=cv,
        random_state=42,
    )

    opt2.fit(X, y)

    assert opt.score(X, y) == opt2.score(X, y) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:39,代碼來源:test_searchcv.py

示例5: test_searchcv_rank

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_searchcv_rank():
    """
    Test whether results of BayesSearchCV can be reproduced with a fixed
    random state.
    """

    X, y = load_iris(True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, train_size=0.75, random_state=0
    )

    random_state = 42

    opt = BayesSearchCV(
        SVC(random_state=random_state),
        {
            'C': Real(1e-6, 1e+6, prior='log-uniform'),
            'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
            'degree': Integer(1, 8),
            'kernel': Categorical(['linear', 'poly', 'rbf']),
        },
        n_iter=11, random_state=random_state, return_train_score=True
    )

    opt.fit(X_train, y_train)
    results = opt.cv_results_

    test_rank = np.asarray(rankdata(-np.array(results["mean_test_score"]),
                                    method='min'), dtype=np.int32)
    train_rank = np.asarray(rankdata(-np.array(results["mean_train_score"]),
                                     method='min'), dtype=np.int32)

    assert_array_equal(np.array(results['rank_test_score']), test_rank)
    assert_array_equal(np.array(results['rank_train_score']), train_rank) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:36,代碼來源:test_searchcv.py

示例6: test_dimensions

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_dimensions():
    check_dimension(Real, (1., 4.), 2.251066014107722)
    check_dimension(Real, (1, 4), 2.251066014107722)
    check_dimension(Integer, (1, 4), 2)
    check_dimension(Integer, (1., 4.), 2)
    check_dimension(Integer, (1, 4), 2)
    check_categorical(("a", "b", "c", "d"), "b")
    check_categorical((1., 2., 3., 4.), 2.)
    check_categorical((1, 2, 3, 4), 2) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:11,代碼來源:test_space.py

示例7: test_integer

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_integer():
    a = Integer(1, 10)
    for i in range(50):
        r = a.rvs(random_state=i)
        assert 1 <= r
        assert 11 >= r
        assert r in a

    random_values = a.rvs(random_state=0, n_samples=10)
    assert_array_equal(random_values.shape, (10))
    assert_array_equal(a.transform(random_values), random_values)
    assert_array_equal(a.inverse_transform(random_values), random_values) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:14,代碼來源:test_space.py

示例8: test_normalize_types

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_normalize_types():
    # can you pass a Space instance to the Space constructor?
    space = Space([(0.0, 1.0), Integer(-5, 5, dtype=int), (True, False)])
    space.set_transformer("normalize")
    X = [[0., -5, False]]
    Xt = np.zeros((1, 3))
    assert_array_equal(space.transform(X), Xt)
    assert_array_equal(space.inverse_transform(Xt), X)
    assert_array_equal(space.inverse_transform(space.transform(X)), X)
    assert isinstance(space.inverse_transform(Xt)[0][0], float)
    assert isinstance(space.inverse_transform(Xt)[0][1], int)
    assert isinstance(space.inverse_transform(Xt)[0][2], (np.bool_, bool)) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:14,代碼來源:test_space.py

示例9: test_valid_transformation

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_valid_transformation():
    check_valid_transformation(Integer)
    check_valid_transformation(Real) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:5,代碼來源:test_space.py

示例10: test_integer_distance

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_integer_distance():
    ints = Integer(1, 10)
    for i in range(1, 10+1):
        assert_equal(ints.distance(4, i), abs(4 - i)) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:6,代碼來源:test_space.py

示例11: test_integer_distance_out_of_range

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_integer_distance_out_of_range():
    ints = Integer(1, 10)
    assert_raises_regex(RuntimeError, "compute distance for values within",
                        ints.distance, 11, 10) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:6,代碼來源:test_space.py

示例12: test_space_from_yaml

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_space_from_yaml():
    with NamedTemporaryFile(delete=False) as tmp:
        tmp.write(b"""
        Space:
            - Real:
                low: 0.0
                high: 1.0
            - Integer:
                low: -5
                high: 5
            - Categorical:
                categories:
                - a
                - b
                - c
            - Real:
                low: 1.0
                high: 5.0
                prior: log-uniform
            - Categorical:
                categories:
                - e
                - f
        """)
        tmp.flush()

        space = Space([(0.0, 1.0),
                       (-5, 5),
                       ("a", "b", "c"),
                       (1.0, 5.0, "log-uniform"),
                       ("e", "f")])

        space2 = Space.from_yaml(tmp.name)
        assert_equal(space, space2)
        tmp.close()
        os.unlink(tmp.name) 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:38,代碼來源:test_space.py

示例13: test_space_names_in_use_named_args

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_space_names_in_use_named_args():
    space = [Integer(250, 2000, name='n_estimators')]

    @use_named_args(space)
    def objective(n_estimators):
        return n_estimators

    res = gp_minimize(objective, space, n_calls=10, random_state=0)
    best_params = dict(zip((s.name for s in res.space), res.x))
    assert 'n_estimators' in best_params
    assert res.space.dimensions[0].name == 'n_estimators' 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:13,代碼來源:test_utils.py

示例14: __init__

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def __init__(self, configspace, **kwargs):
        super().__init__(
            configspace, reward_attribute=kwargs.get('reward_attribute'))
        self.hp_ordering = configspace.get_hyperparameter_names() # fix order of hyperparams in configspace.
        skopt_hpspace = []
        for hp in self.hp_ordering:
            hp_obj = configspace.get_hyperparameter(hp)
            hp_type = str(type(hp_obj)).lower() # type of hyperparam
            if 'integer' in hp_type:
                hp_dimension = Integer(low=int(hp_obj.lower), high=int(hp_obj.upper),name=hp)
            elif 'float' in hp_type:
                if hp_obj.log: # log10-scale hyperparmeter
                    hp_dimension = Real(low=float(hp_obj.lower), high=float(hp_obj.upper), prior='log-uniform', name=hp)
                else:
                    hp_dimension = Real(low=float(hp_obj.lower), high=float(hp_obj.upper), name=hp)
            elif 'categorical' in hp_type:
                hp_dimension = Categorical(hp_obj.choices, name=hp)
            elif 'ordinal' in hp_type:
                hp_dimension = Categorical(hp_obj.sequence, name=hp)
            else:
                raise ValueError("unknown hyperparameter type: %s" % hp)
            skopt_hpspace.append(hp_dimension)
        skopt_keys = {
            'base_estimator', 'n_random_starts', 'n_initial_points',
            'acq_func', 'acq_optimizer', 'random_state',  'model_queue_size',
            'acq_func_kwargs', 'acq_optimizer_kwargs'}
        skopt_kwargs = self._filter_skopt_kwargs(kwargs, skopt_keys)
        self.bayes_optimizer = Optimizer(
            dimensions=skopt_hpspace, **skopt_kwargs) 
開發者ID:awslabs,項目名稱:autogluon,代碼行數:31,代碼來源:skopt_searcher.py

示例15: test_searchcv_runs

# 需要導入模塊: from skopt import space [as 別名]
# 或者: from skopt.space import Integer [as 別名]
def test_searchcv_runs(surrogate, n_jobs, n_points, cv=None):
    """
    Test whether the cross validation search wrapper around sklearn
    models runs properly with available surrogates and with single
    or multiple workers and different number of parameter settings
    to ask from the optimizer in parallel.

    Parameters
    ----------

    * `surrogate` [str or None]:
        A class of the scikit-optimize surrogate used. None means
        to use default surrogate.

    * `n_jobs` [int]:
        Number of parallel processes to use for computations.

    """

    X, y = load_iris(True)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, train_size=0.75, random_state=0
    )

    # create an instance of a surrogate if it is not a string
    if surrogate is not None:
        optimizer_kwargs = {'base_estimator': surrogate}
    else:
        optimizer_kwargs = None

    opt = BayesSearchCV(
        SVC(),
        {
            'C': Real(1e-6, 1e+6, prior='log-uniform'),
            'gamma': Real(1e-6, 1e+1, prior='log-uniform'),
            'degree': Integer(1, 8),
            'kernel': Categorical(['linear', 'poly', 'rbf']),
        },
        n_jobs=n_jobs, n_iter=11, n_points=n_points, cv=cv,
        optimizer_kwargs=optimizer_kwargs
    )

    opt.fit(X_train, y_train)

    # this normally does not hold only if something is wrong
    # with the optimizaiton procedure as such
    assert opt.score(X_test, y_test) > 0.9 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:49,代碼來源:test_searchcv.py


注:本文中的skopt.space.Integer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。