當前位置: 首頁>>代碼示例>>Python>>正文


Python testing.assert_raises方法代碼示例

本文整理匯總了Python中sklearn.utils.testing.assert_raises方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.assert_raises方法的具體用法?Python testing.assert_raises怎麽用?Python testing.assert_raises使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.utils.testing的用法示例。


在下文中一共展示了testing.assert_raises方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_fit_predict_score

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test, self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test, self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test, self.y_test,
                                       scoring='something')

    # def test_score(self):
    #     self.clf.score(self.X_test, self.y_test)
    #     self.clf.score(self.X_test, self.y_test, scoring='roc_auc_score')
    #     self.clf.score(self.X_test, self.y_test, scoring='prc_n_score')
    #     with assert_raises(NotImplementedError):
    #         self.clf.score(self.X_test, self.y_test, scoring='something') 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:18,代碼來源:test_hbos.py

示例2: test_check_parameters

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_check_parameters(self):
        with assert_raises(ValueError):
            SOD(n_neighbors=None, ref_set=10, alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set=None, alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set=10, alpha=None)
        with assert_raises(ValueError):
            SOD(n_neighbors=-1, ref_set=10, alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set=-1, alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set=10, alpha=-1)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set=25, alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors='not int', ref_set=25, alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set='not int', alpha=0.8)
        with assert_raises(ValueError):
            SOD(n_neighbors=20, ref_set=25, alpha='not float') 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:23,代碼來源:test_sod.py

示例3: test_stratified_shuffle_split_init

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_stratified_shuffle_split_init():
    X = np.arange(7)
    y = np.asarray([0, 1, 1, 1, 2, 2, 2])
    # Check that error is raised if there is a class with only one sample
    assert_raises(ValueError, next,
                  StratifiedShuffleSplit(3, 0.2).split(X, y))

    # Check that error is raised if the test set size is smaller than n_classes
    assert_raises(ValueError, next, StratifiedShuffleSplit(3, 2).split(X, y))
    # Check that error is raised if the train set size is smaller than
    # n_classes
    assert_raises(ValueError, next,
                  StratifiedShuffleSplit(3, 3, 2).split(X, y))

    X = np.arange(9)
    y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2])

    # Train size or test size too small
    assert_raises(ValueError, next,
                  StratifiedShuffleSplit(train_size=2).split(X, y))
    assert_raises(ValueError, next,
                  StratifiedShuffleSplit(test_size=2).split(X, y)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_split.py

示例4: test_lasso_lars_ic

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_lasso_lars_ic():
    # Test the LassoLarsIC object by checking that
    # - some good features are selected.
    # - alpha_bic > alpha_aic
    # - n_nonzero_bic < n_nonzero_aic
    lars_bic = linear_model.LassoLarsIC('bic')
    lars_aic = linear_model.LassoLarsIC('aic')
    rng = np.random.RandomState(42)
    X = diabetes.data
    X = np.c_[X, rng.randn(X.shape[0], 5)]  # add 5 bad features
    lars_bic.fit(X, y)
    lars_aic.fit(X, y)
    nonzero_bic = np.where(lars_bic.coef_)[0]
    nonzero_aic = np.where(lars_aic.coef_)[0]
    assert_greater(lars_bic.alpha_, lars_aic.alpha_)
    assert_less(len(nonzero_bic), len(nonzero_aic))
    assert_less(np.max(nonzero_bic), diabetes.data.shape[1])

    # test error on unknown IC
    lars_broken = linear_model.LassoLarsIC('<unknown>')
    assert_raises(ValueError, lars_broken.fit, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_least_angle.py

示例5: test_init

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_init(self):
        """
        Test base class initialization

        :return:
        """
        self.dummy_clf = Dummy1()
        self.dummy_clf = Dummy1(base_estimators=[DecisionTreeClassifier(),
                                                 DecisionTreeClassifier()])
        # assert_equal(self.dummy_clf.base_estimators,
        #              [DecisionTreeClassifier(), LogisticRegression()])
        #
        # self.dummy_clf = Dummy1(
        #     base_estimators=[LogisticRegression(), DecisionTreeClassifier()])
        # assert_equal(self.dummy_clf.base_estimators,
        #              [LogisticRegression(), DecisionTreeClassifier()])

        # with assert_raises(ValueError):
        #     Dummy1(base_estimators=[LogisticRegression()])
        #
        # with assert_raises(ValueError):
        #     Dummy1(base_estimators=0)
        #
        # with assert_raises(ValueError):
        #     Dummy1(base_estimators=-0.5) 
開發者ID:yzhao062,項目名稱:combo,代碼行數:27,代碼來源:test_base.py

示例6: test_prediction_proba_parameter

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_prediction_proba_parameter(self):
        with assert_raises(ValueError):
            self.clf.predict_proba(self.X_test, method='something') 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:5,代碼來源:test_loda.py

示例7: test_fit_predict_score

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_fit_predict_score(self):
        self.clf.fit_predict_score(self.X_test, self.y_test)
        self.clf.fit_predict_score(self.X_test, self.y_test,
                                   scoring='roc_auc_score')
        self.clf.fit_predict_score(self.X_test, self.y_test,
                                   scoring='prc_n_score')
        with assert_raises(NotImplementedError):
            self.clf.fit_predict_score(self.X_test, self.y_test,
                                       scoring='something') 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:11,代碼來源:test_loda.py

示例8: test_aom_static_n_buckets

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_aom_static_n_buckets(self):
        with assert_raises(ValueError):
            aom(self.scores, 5, method='static', bootstrap_estimators=False,
                random_state=42)

        # TODO: add more complicated testcases 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:8,代碼來源:test_combination.py

示例9: test_moa_static_n_buckets

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_moa_static_n_buckets(self):
        with assert_raises(ValueError):
            moa(self.scores, 5, method='static', bootstrap_estimators=False,
                random_state=42)

        # TODO: add more complicated testcases 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:8,代碼來源:test_combination.py

示例10: test_get_params

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_get_params(self):
        test = T(K(), K())

        assert ('a__d' in test.get_params(deep=True))
        assert ('a__d' not in test.get_params(deep=False))

        test.set_params(a__d=2)
        assert (test.a.d == 2)
        assert_raises(ValueError, test.set_params, a__a=2) 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:11,代碼來源:test_base.py

示例11: test_check_consistent_shape

# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import assert_raises [as 別名]
def test_check_consistent_shape(self):
        X_train, y_train, X_test, y_test = generate_data(
            n_train=self.n_train,
            n_test=self.n_test,
            contamination=self.contamination)

        X_train_n, y_train_n, X_test_n, y_test_n, y_train_pred_n, y_test_pred_n \
            = check_consistent_shape(X_train, y_train, X_test, y_test,
                                     y_train, y_test)

        assert_allclose(X_train_n, X_train)
        assert_allclose(y_train_n, y_train)
        assert_allclose(X_test_n, X_test)
        assert_allclose(y_test_n, y_test)
        assert_allclose(y_train_pred_n, y_train)
        assert_allclose(y_test_pred_n, y_test)

        # test shape difference
        with assert_raises(ValueError):
            check_consistent_shape(X_train, y_train, y_train, y_test,
                                   y_train, y_test)

        # test shape difference between X_train and X_test
        X_test = np.hstack((X_test, np.zeros(
            (X_test.shape[0], 1))))  # add extra column/feature
        with assert_raises(ValueError):
            check_consistent_shape(X_train, y_train, X_test, y_test,
                                   y_train_pred_n, y_test_pred_n) 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:30,代碼來源:test_data.py


注:本文中的sklearn.utils.testing.assert_raises方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。