本文整理匯總了Python中sklearn.utils.testing.SkipTest方法的典型用法代碼示例。如果您正苦於以下問題:Python testing.SkipTest方法的具體用法?Python testing.SkipTest怎麽用?Python testing.SkipTest使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils.testing
的用法示例。
在下文中一共展示了testing.SkipTest方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_type_of_target
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_type_of_target():
for group, group_examples in EXAMPLES.items():
for example in group_examples:
assert_equal(type_of_target(example), group,
msg=('type_of_target(%r) should be %r, got %r'
% (example, group, type_of_target(example))))
for example in NON_ARRAY_LIKE_EXAMPLES:
msg_regex = r'Expected array-like \(array or non-string sequence\).*'
assert_raises_regex(ValueError, msg_regex, type_of_target, example)
for example in MULTILABEL_SEQUENCES:
msg = ('You appear to be using a legacy multi-label data '
'representation. Sequence of sequences are no longer supported;'
' use a binary array or sparse matrix instead.')
assert_raises_regex(ValueError, msg, type_of_target, example)
try:
from pandas import SparseSeries
except ImportError:
raise SkipTest("Pandas not found")
y = SparseSeries([1, 0, 0, 1, 0])
msg = "y cannot be class 'SparseSeries'."
assert_raises_regex(ValueError, msg, type_of_target, y)
示例2: test_spectral_embedding_amg_solver
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_spectral_embedding_amg_solver(seed=36):
# Test spectral embedding with amg solver
try:
from pyamg import smoothed_aggregation_solver # noqa
except ImportError:
raise SkipTest("pyamg not available.")
se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
eigen_solver="amg", n_neighbors=5,
random_state=np.random.RandomState(seed))
se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
eigen_solver="arpack", n_neighbors=5,
random_state=np.random.RandomState(seed))
embed_amg = se_amg.fit_transform(S)
embed_arpack = se_arpack.fit_transform(S)
assert _check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05)
示例3: test_perfect_checkerboard
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_perfect_checkerboard():
# XXX test always skipped
raise SkipTest("This test is failing on the buildbot, but cannot"
" reproduce. Temporarily disabling it until it can be"
" reproduced and fixed.")
model = SpectralBiclustering(3, svd_method="arpack", random_state=0)
S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
random_state=0)
model.fit(S)
assert_equal(consensus_score(model.biclusters_,
(rows, cols)), 1)
S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
random_state=0)
model.fit(S)
assert_equal(consensus_score(model.biclusters_,
(rows, cols)), 1)
S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
random_state=0)
model.fit(S)
assert_equal(consensus_score(model.biclusters_,
(rows, cols)), 1)
示例4: test_fetch
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_fetch():
try:
data1 = fetch(shuffle=True, random_state=42)
except IOError:
raise SkipTest("Covertype dataset can not be loaded.")
data2 = fetch(shuffle=True, random_state=37)
X1, X2 = data1['data'], data2['data']
assert_equal((581012, 54), X1.shape)
assert_equal(X1.shape, X2.shape)
assert_equal(X1.sum(), X2.sum())
y1, y2 = data1['target'], data2['target']
assert_equal((X1.shape[0],), y1.shape)
assert_equal((X1.shape[0],), y2.shape)
# test return_X_y option
fetch_func = partial(fetch)
check_return_X_y(data1, fetch_func)
示例5: check_sample_weights_pandas_series
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def check_sample_weights_pandas_series(name, estimator_orig):
# check that estimators will accept a 'sample_weight' parameter of
# type pandas.Series in the 'fit' function.
estimator = clone(estimator_orig)
if has_fit_parameter(estimator, "sample_weight"):
try:
import pandas as pd
X = pd.DataFrame([[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3]])
y = pd.Series([1, 1, 1, 2, 2, 2])
weights = pd.Series([1] * 6)
try:
estimator.fit(X, y, sample_weight=weights)
except ValueError:
raise ValueError("Estimator {0} raises error if "
"'sample_weight' parameter is of "
"type pandas.Series".format(name))
except ImportError:
raise SkipTest("pandas is not installed: not testing for "
"input of type pandas.Series to class weight.")
示例6: check_estimators_data_not_an_array
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def check_estimators_data_not_an_array(name, estimator_orig, X, y):
if name in CROSS_DECOMPOSITION:
raise SkipTest
# separate estimators to control random seeds
estimator_1 = clone(estimator_orig)
estimator_2 = clone(estimator_orig)
set_random_state(estimator_1)
set_random_state(estimator_2)
y_ = NotAnArray(np.asarray(y))
X_ = NotAnArray(np.asarray(X))
# fit
estimator_1.fit(X_, y_)
pred1 = estimator_1.predict(X_)
estimator_2.fit(X, y)
pred2 = estimator_2.predict(X)
assert_allclose(pred1, pred2, atol=1e-2, err_msg=name)
示例7: fit
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def fit(self, X, y):
logger = logging.get_logger(__name__)
trainer = create_trainer(
objective='binary',
metric='auc',
sampler=self.sampler,
n_jobs=self.n_jobs,
create_validation=self.create_validation,
cv=self.cv,
random_state=self.random_state,
)
optimizer = create_optimizer(
objective=self.objective,
trainer=trainer,
n_trials=self.n_trials,
random_state=self.random_state,
)
X, y = validate_dataset(optimizer, X, y)
if len(y.unique()) != 2:
raise SkipTest('binary classification is only supported')
logger.info('start optimization')
optimizer.optimize(X, y)
self._optimizer = optimizer
示例8: test_type_of_target
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_type_of_target():
for group, group_examples in iteritems(EXAMPLES):
for example in group_examples:
assert_equal(type_of_target(example), group,
msg=('type_of_target(%r) should be %r, got %r'
% (example, group, type_of_target(example))))
for example in NON_ARRAY_LIKE_EXAMPLES:
msg_regex = 'Expected array-like \(array or non-string sequence\).*'
assert_raises_regex(ValueError, msg_regex, type_of_target, example)
for example in MULTILABEL_SEQUENCES:
msg = ('You appear to be using a legacy multi-label data '
'representation. Sequence of sequences are no longer supported;'
' use a binary array or sparse matrix instead.')
assert_raises_regex(ValueError, msg, type_of_target, example)
try:
from pandas import SparseSeries
except ImportError:
raise SkipTest("Pandas not found")
y = SparseSeries([1, 0, 0, 1, 0])
msg = "y cannot be class 'SparseSeries'."
assert_raises_regex(ValueError, msg, type_of_target, y)
示例9: test_spectral_embedding_amg_solver
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_spectral_embedding_amg_solver(seed=36):
# Test spectral embedding with amg solver
try:
from pyamg import smoothed_aggregation_solver # noqa
except ImportError:
raise SkipTest("pyamg not available.")
se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
eigen_solver="amg", n_neighbors=5,
random_state=np.random.RandomState(seed))
se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
eigen_solver="arpack", n_neighbors=5,
random_state=np.random.RandomState(seed))
embed_amg = se_amg.fit_transform(S)
embed_arpack = se_arpack.fit_transform(S)
assert_true(_check_with_col_sign_flipping(embed_amg, embed_arpack, 0.05))
示例10: test_bayesian_on_diabetes
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_bayesian_on_diabetes():
# Test BayesianRidge on diabetes
raise SkipTest("XFailed Test")
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target
clf = BayesianRidge(compute_score=True)
# Test with more samples than features
clf.fit(X, y)
# Test that scores are increasing at each iteration
assert_array_equal(np.diff(clf.scores_) > 0, True)
# Test with more features than samples
X = X[:5, :]
y = y[:5]
clf.fit(X, y)
# Test that scores are increasing at each iteration
assert_array_equal(np.diff(clf.scores_) > 0, True)
示例11: test_perfect_checkerboard
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_perfect_checkerboard():
raise SkipTest("This test is failing on the buildbot, but cannot"
" reproduce. Temporarily disabling it until it can be"
" reproduced and fixed.")
model = SpectralBiclustering(3, svd_method="arpack", random_state=0)
S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
random_state=0)
model.fit(S)
assert_equal(consensus_score(model.biclusters_,
(rows, cols)), 1)
S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
random_state=0)
model.fit(S)
assert_equal(consensus_score(model.biclusters_,
(rows, cols)), 1)
S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
random_state=0)
model.fit(S)
assert_equal(consensus_score(model.biclusters_,
(rows, cols)), 1)
示例12: test_fetch
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_fetch():
try:
data1 = fetch(shuffle=True, random_state=42)
except IOError:
raise SkipTest("Covertype dataset can not be loaded.")
data2 = fetch(shuffle=True, random_state=37)
X1, X2 = data1['data'], data2['data']
assert_equal((581012, 54), X1.shape)
assert_equal(X1.shape, X2.shape)
assert_equal(X1.sum(), X2.sum())
y1, y2 = data1['target'], data2['target']
assert_equal((X1.shape[0],), y1.shape)
assert_equal((X1.shape[0],), y2.shape)
示例13: test_gaussian_kde
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_gaussian_kde(n_samples=1000):
# Compare gaussian KDE results to scipy.stats.gaussian_kde
from scipy.stats import gaussian_kde
rng = check_random_state(0)
x_in = rng.normal(0, 1, n_samples)
x_out = np.linspace(-5, 5, 30)
for h in [0.01, 0.1, 1]:
bt = BallTree(x_in[:, None])
try:
gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in))
except TypeError:
raise SkipTest("Old version of scipy, doesn't accept "
"explicit bandwidth.")
dens_bt = bt.kernel_density(x_out[:, None], h) / n_samples
dens_gkde = gkde.evaluate(x_out)
assert_array_almost_equal(dens_bt, dens_gkde, decimal=3)
示例14: test_gaussian_kde
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def test_gaussian_kde(n_samples=1000):
# Compare gaussian KDE results to scipy.stats.gaussian_kde
from scipy.stats import gaussian_kde
rng = check_random_state(0)
x_in = rng.normal(0, 1, n_samples)
x_out = np.linspace(-5, 5, 30)
for h in [0.01, 0.1, 1]:
kdt = KDTree(x_in[:, None])
try:
gkde = gaussian_kde(x_in, bw_method=h / np.std(x_in))
except TypeError:
raise SkipTest("Old scipy, does not accept explicit bandwidth.")
dens_kdt = kdt.kernel_density(x_out[:, None], h) / n_samples
dens_gkde = gkde.evaluate(x_out)
assert_array_almost_equal(dens_kdt, dens_gkde, decimal=3)
示例15: custom_check_estimator
# 需要導入模塊: from sklearn.utils import testing [as 別名]
# 或者: from sklearn.utils.testing import SkipTest [as 別名]
def custom_check_estimator(Estimator):
# Same as sklearn.check_estimator, skipping tests that can't succeed.
from sklearn.utils.estimator_checks import _yield_all_checks
from sklearn.utils.testing import SkipTest
from sklearn.exceptions import SkipTestWarning
from sklearn.utils import estimator_checks
estimator = Estimator
name = type(estimator).__name__
for check in _yield_all_checks(name, estimator):
if (check is estimator_checks.check_fit2d_1feature or
check is estimator_checks.check_fit2d_1sample):
# X is both Fortran and C aligned and numba can't compile.
# Opened numba issue 3569
continue
if check is estimator_checks.check_classifiers_train:
continue # probas don't exactly sum to 1 (very close though)
if (hasattr(check, 'func') and
check.func is estimator_checks.check_classifiers_train):
continue # same, wrapped in a functools.partial object.
try:
check(name, estimator)
except SkipTest as exception:
# the only SkipTest thrown currently results from not
# being able to import pandas.
warnings.warn(str(exception), SkipTestWarning)