當前位置: 首頁>>代碼示例>>Python>>正文


Python sparsefuncs.mean_variance_axis方法代碼示例

本文整理匯總了Python中sklearn.utils.sparsefuncs.mean_variance_axis方法的典型用法代碼示例。如果您正苦於以下問題:Python sparsefuncs.mean_variance_axis方法的具體用法?Python sparsefuncs.mean_variance_axis怎麽用?Python sparsefuncs.mean_variance_axis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.utils.sparsefuncs的用法示例。


在下文中一共展示了sparsefuncs.mean_variance_axis方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_scale_function_without_centering

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def test_scale_function_without_centering():
    rng = np.random.RandomState(42)
    X = rng.randn(4, 5)
    X[:, 0] = 0.0  # first feature is always of zero
    X_csr = sparse.csr_matrix(X)

    X_scaled = scale(X, with_mean=False)
    assert not np.any(np.isnan(X_scaled))

    X_csr_scaled = scale(X_csr, with_mean=False)
    assert not np.any(np.isnan(X_csr_scaled.data))

    # test csc has same outcome
    X_csc_scaled = scale(X_csr.tocsc(), with_mean=False)
    assert_array_almost_equal(X_scaled, X_csc_scaled.toarray())

    # raises value error on axis != 0
    assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1)

    assert_array_almost_equal(X_scaled.mean(axis=0),
                              [0., -0.01, 2.24, -0.35, -0.78], 2)
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
    # Check that X has not been copied
    assert X_scaled is not X

    X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0)
    assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
    assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))

    # null scale
    X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True)
    assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray()) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:34,代碼來源:test_data.py

示例2: test_mean_var_sparse

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def test_mean_var_sparse():
    from sklearn.utils.sparsefuncs import mean_variance_axis

    csr64 = sp.random(10000, 1000, format="csr", dtype=np.float64)
    csc64 = csr64.tocsc()

    # Test that we're equivalent for 64 bit
    for mtx, ax in product((csr64, csc64), (0, 1)):
        scm, scv = sc.pp._utils._get_mean_var(mtx, axis=ax)
        skm, skv = mean_variance_axis(mtx, ax)
        skv *= (mtx.shape[ax] / (mtx.shape[ax] - 1))

        assert np.allclose(scm, skm)
        assert np.allclose(scv, skv)

    csr32 = csr64.astype(np.float32)
    csc32 = csc64.astype(np.float32)

    # Test whether ours is more accurate for 32 bit
    for mtx32, mtx64 in [(csc32, csc64), (csr32, csr64)]:
        scm32, scv32 = sc.pp._utils._get_mean_var(mtx32)
        scm64, scv64 = sc.pp._utils._get_mean_var(mtx64)
        skm32, skv32 = mean_variance_axis(mtx32, 0)
        skm64, skv64 = mean_variance_axis(mtx64, 0)
        skv32 *= (mtx.shape[0] / (mtx.shape[0] - 1))
        skv64 *= (mtx.shape[0] / (mtx.shape[0] - 1))

        m_resid_sc = np.mean(np.abs(scm64 - scm32))
        m_resid_sk = np.mean(np.abs(skm64 - skm32))
        v_resid_sc = np.mean(np.abs(scv64 - scv32))
        v_resid_sk = np.mean(np.abs(skv64 - skv32))

        assert m_resid_sc < m_resid_sk
        assert v_resid_sc < v_resid_sk 
開發者ID:theislab,項目名稱:scanpy,代碼行數:36,代碼來源:test_preprocessing.py

示例3: _tolerance

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def _tolerance(X, tol):
    """Return a tolerance which is independent of the dataset"""
    if sp.issparse(X):
        variances = mean_variance_axis(X, axis=0)[1]
    else:
        variances = np.var(X, axis=0)
    return np.mean(variances) * tol 
開發者ID:ndanielsen,項目名稱:Same-Size-K-Means,代碼行數:9,代碼來源:equal_groups.py

示例4: _tolerance

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def _tolerance(X, rtol):
    """Compute absolute tolerance from the relative tolerance"""
    if rtol == 0.0:
        return rtol
    if sp.issparse(X):
        variances = mean_variance_axis(X, axis=0)[1]
        mean_var = np.mean(variances)
    else:
        mean_var = _daal_mean_var(X)
    return mean_var * rtol 
開發者ID:IntelPython,項目名稱:daal4py,代碼行數:12,代碼來源:_k_means_0_23.py

示例5: compute_scoring_func

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def compute_scoring_func(self, func):
        if func == 'variance':
            features = self.instances.features.get_values()
            annotations = self.instances.annotations.get_labels()
            if isinstance(features, spmatrix):
                variance = mean_variance_axis(features, axis=0)[1]
            else:
                variance = features.var(axis=0)
            return variance, None

        features = self.annotated_instances.features.get_values()
        annotations = self.annotated_instances.annotations.get_supervision(
                                                               self.multiclass)
        if func == 'f_classif':
            return f_classif(features, annotations)
        elif func == 'mutual_info_classif':
            if isinstance(features, spmatrix):
                discrete_indexes = True
            else:
                features_types = self.instances.features.info.types
                discrete_indexes = [i for i, t in enumerate(features_types)
                                    if t == FeatureType.binary]
                if not discrete_indexes:
                    discrete_indexes = False
            return (mutual_info_classif(features, annotations,
                                        discrete_features=discrete_indexes),
                    None)
        elif func == 'chi2':
            return chi2(features, annotations)
        else:
            assert(False) 
開發者ID:ANSSI-FR,項目名稱:SecuML,代碼行數:33,代碼來源:scores.py

示例6: _display_dataset

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def _display_dataset(self, dataset):
        eps = 0.00001
        linewidth = dataset.linewidth
        delta = self.max_value - self.min_value
        density_delta = 1.2 * delta
        if delta > 0:
            x = np.arange(self.min_value - 0.1*delta,
                          self.max_value + 0.1*delta,
                          density_delta / self.num_points)
        else:
            x = np.array([self.min_value - 2*eps, self.max_value + 2*eps])
        if isinstance(dataset.values, spmatrix):
            variance = mean_variance_axis(dataset.values, axis=0)[1]
        else:
            variance = np.var(dataset.values)
        if variance < eps:
            linewidth += 2
            mean = np.mean(dataset.values)
            x = np.sort(np.append(x, [mean, mean - eps, mean + eps]))
            density = [1 if v == mean else 0 for v in x]
        else:
            self.kde.fit(dataset.values)
            x_density = [[y] for y in x]
            # kde.score_samples returns the 'log' of the density
            log_density = self.kde.score_samples(x_density).tolist()
            density = list(map(math.exp, log_density))
        self.ax.plot(x, density, label=dataset.label, color=dataset.color,
                     linewidth=linewidth, linestyle=dataset.linestyle) 
開發者ID:ANSSI-FR,項目名稱:SecuML,代碼行數:30,代碼來源:density.py

示例7: test_scale_function_without_centering

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def test_scale_function_without_centering():
    rng = np.random.RandomState(42)
    X = rng.randn(4, 5)
    X[:, 0] = 0.0  # first feature is always of zero
    X_csr = sparse.csr_matrix(X)

    X_scaled = scale(X, with_mean=False)
    assert_false(np.any(np.isnan(X_scaled)))

    X_csr_scaled = scale(X_csr, with_mean=False)
    assert_false(np.any(np.isnan(X_csr_scaled.data)))

    # test csc has same outcome
    X_csc_scaled = scale(X_csr.tocsc(), with_mean=False)
    assert_array_almost_equal(X_scaled, X_csc_scaled.toarray())

    # raises value error on axis != 0
    assert_raises(ValueError, scale, X_csr, with_mean=False, axis=1)

    assert_array_almost_equal(X_scaled.mean(axis=0),
                              [0., -0.01, 2.24, -0.35, -0.78], 2)
    assert_array_almost_equal(X_scaled.std(axis=0), [0., 1., 1., 1., 1.])
    # Check that X has not been copied
    assert_true(X_scaled is not X)

    X_csr_scaled_mean, X_csr_scaled_std = mean_variance_axis(X_csr_scaled, 0)
    assert_array_almost_equal(X_csr_scaled_mean, X_scaled.mean(axis=0))
    assert_array_almost_equal(X_csr_scaled_std, X_scaled.std(axis=0))

    # null scale
    X_csr_scaled = scale(X_csr, with_mean=False, with_std=False, copy=True)
    assert_array_almost_equal(X_csr.toarray(), X_csr_scaled.toarray()) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:34,代碼來源:test_data.py

示例8: fit

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def fit(self, Z):
        """Learn empirical variances from X.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape (n_samples, n_features)
            Sample vectors from which to compute variances.

        y : any
            Ignored. This parameter exists only for compatibility with
            sklearn.pipeline.Pipeline.

        Returns
        -------
        self
        """

        X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
        check_rdd(X, (np.ndarray, sp.spmatrix))

        def mapper(X):
            """Calculate statistics for every numpy or scipy blocks."""
            X = check_array(X, ('csr', 'csc'), dtype=np.float64)
            if hasattr(X, "toarray"):   # sparse matrix
                mean, var = mean_variance_axis(X, axis=0)
            else:
                mean, var = np.mean(X, axis=0), np.var(X, axis=0)
            return X.shape[0], mean, var

        def reducer(a, b):
            """Calculate the combined statistics."""
            n_a, mean_a, var_a = a
            n_b, mean_b, var_b = b
            n_ab = n_a + n_b
            mean_ab = ((mean_a * n_a) + (mean_b * n_b)) / n_ab
            var_ab = (((n_a * var_a) + (n_b * var_b)) / n_ab) + \
                     ((n_a * n_b) * ((mean_b - mean_a) / n_ab) ** 2)
            return (n_ab, mean_ab, var_ab)

        _, _, self.variances_ = X.map(mapper).treeReduce(reducer)

        if np.all(self.variances_ <= self.threshold):
            msg = "No feature in X meets the variance threshold {0:.5f}"
            if X.shape[0] == 1:
                msg += " (X contains only one sample)"
            raise ValueError(msg.format(self.threshold))

        return self 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:50,代碼來源:variance_threshold.py

示例9: fit

# 需要導入模塊: from sklearn.utils import sparsefuncs [as 別名]
# 或者: from sklearn.utils.sparsefuncs import mean_variance_axis [as 別名]
def fit(self, Z):
        """Compute the mean and std to be used for later scaling.
        Parameters
        ----------
        Z : DictRDD containing (X, y) pairs
            X - Training vector.
                {array-like, sparse matrix}, shape [n_samples, n_features]
                The data used to compute the mean and standard deviation
                used for later scaling along the features axis.
            y - Target labels
                Passthrough for ``Pipeline`` compatibility.
        """

        # Reset internal state before fitting
        self._reset()
        X = Z[:, 'X'] if isinstance(Z, DictRDD) else Z
        check_rdd(X, (np.ndarray, sp.spmatrix))

        def mapper(X):
            """Calculate statistics for every numpy or scipy blocks."""
            X = check_array(X, ('csr', 'csc'), dtype=np.float64)
            if hasattr(X, "toarray"):   # sparse matrix
                mean, var = mean_variance_axis(X, axis=0)
            else:
                mean, var = np.mean(X, axis=0), np.var(X, axis=0)
            return X.shape[0], mean, var

        def reducer(a, b):
            """Calculate the combined statistics."""
            n_a, mean_a, var_a = a
            n_b, mean_b, var_b = b
            n_ab = n_a + n_b
            mean_ab = ((mean_a * n_a) + (mean_b * n_b)) / n_ab
            var_ab = (((n_a * var_a) + (n_b * var_b)) / n_ab) + \
                     ((n_a * n_b) * ((mean_b - mean_a) / n_ab) ** 2)
            return (n_ab, mean_ab, var_ab)

        if check_rdd_dtype(X, (sp.spmatrix)):
            if self.with_mean:
                raise ValueError(
                    "Cannot center sparse matrices: pass `with_mean=False` "
                    "instead. See docstring for motivation and alternatives.")
        self.n_samples_seen_, self.mean_, self.var_ = X.map(mapper).treeReduce(reducer)

        if self.with_std:
            self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_))
        else:
            self.scale_ = None

        return self 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:52,代碼來源:data.py


注:本文中的sklearn.utils.sparsefuncs.mean_variance_axis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。