當前位置: 首頁>>代碼示例>>Python>>正文


Python multiclass.unique_labels方法代碼示例

本文整理匯總了Python中sklearn.utils.multiclass.unique_labels方法的典型用法代碼示例。如果您正苦於以下問題:Python multiclass.unique_labels方法的具體用法?Python multiclass.unique_labels怎麽用?Python multiclass.unique_labels使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.utils.multiclass的用法示例。


在下文中一共展示了multiclass.unique_labels方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: run_story_evaluation

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def run_story_evaluation(story_file, policy_model_path, nlu_model_path,
                         out_file, max_stories):
    """Run the evaluation of the stories, plots the results."""
    from sklearn.metrics import confusion_matrix
    from sklearn.utils.multiclass import unique_labels

    test_y, preds = collect_story_predictions(story_file, policy_model_path,
                                              nlu_model_path, max_stories)

    log_evaluation_table(test_y, preds)
    cnf_matrix = confusion_matrix(test_y, preds)
    plot_confusion_matrix(cnf_matrix, classes=unique_labels(test_y, preds),
                          title='Action Confusion matrix')

    fig = plt.gcf()
    fig.set_size_inches(int(20), int(20))
    fig.savefig(out_file, bbox_inches='tight') 
開發者ID:Rowl1ng,項目名稱:rasa_wechat,代碼行數:19,代碼來源:evaluate.py

示例2: test_unique_labels_non_specific

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def test_unique_labels_non_specific():
    # Test unique_labels with a variety of collected examples

    # Smoke test for all supported format
    for format in ["binary", "multiclass", "multilabel-indicator"]:
        for y in EXAMPLES[format]:
            unique_labels(y)

    # We don't support those format at the moment
    for example in NON_ARRAY_LIKE_EXAMPLES:
        assert_raises(ValueError, unique_labels, example)

    for y_type in ["unknown", "continuous", 'continuous-multioutput',
                   'multiclass-multioutput']:
        for example in EXAMPLES[y_type]:
            assert_raises(ValueError, unique_labels, example) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_multiclass.py

示例3: fit

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def fit(self, y):
        """Fit label binarizer

        Parameters
        ----------
        y : array of shape [n_samples,] or [n_samples, n_classes]
            Target values. The 2-d matrix should only contain 0 and 1,
            represents multilabel classification.

        Returns
        -------
        self : returns an instance of self.
        """
        self.y_type_ = type_of_target(y)
        if 'multioutput' in self.y_type_:
            raise ValueError("Multioutput target data is not supported with "
                             "label binarization")
        if _num_samples(y) == 0:
            raise ValueError('y has 0 samples: %r' % y)

        self.sparse_input_ = sp.issparse(y)
        self.classes_ = unique_labels(y)
        return self 
開發者ID:bmcfee,項目名稱:pumpp,代碼行數:25,代碼來源:labels.py

示例4: _init_classes

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def _init_classes(self, y):
        """Map all possible classes to the range [0,..,C-1]

        Parameters
        ----------

        y : list of arrays of int, each element has shape=[samples_i,]
            Labels of the samples for each subject


        Returns
        -------
        new_y : list of arrays of int, each element has shape=[samples_i,]
            Mapped labels of the samples for each subject

        Note
        ----
            The mapping of the classes is saved in the attribute classes_.
        """
        self.classes_ = unique_labels(utils.concatenate_not_none(y))
        new_y = [None] * len(y)
        for s in range(len(y)):
            new_y[s] = np.digitize(y[s], self.classes_) - 1
        return new_y 
開發者ID:brainiak,項目名稱:brainiak,代碼行數:26,代碼來源:sssrm.py

示例5: plot_story_evaluation

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def plot_story_evaluation(test_y, predictions,
                          report, precision, f1, accuracy,
                          in_training_data_fraction,
                          out_directory):
    """Plot the results of story evaluation"""
    from sklearn.metrics import confusion_matrix
    from sklearn.utils.multiclass import unique_labels
    import matplotlib.pyplot as plt
    from rasa_nlu.test import plot_confusion_matrix

    log_evaluation_table(test_y, "ACTION",
                         report, precision, f1, accuracy,
                         in_training_data_fraction,
                         include_report=True)

    cnf_matrix = confusion_matrix(test_y, predictions)

    plot_confusion_matrix(cnf_matrix,
                          classes=unique_labels(test_y, predictions),
                          title='Action Confusion matrix')

    fig = plt.gcf()
    fig.set_size_inches(int(20), int(20))
    fig.savefig(os.path.join(out_directory, "story_confmat.pdf"),
                bbox_inches='tight') 
開發者ID:RasaHQ,項目名稱:rasa_core,代碼行數:27,代碼來源:test.py

示例6: _preprocess_labels

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def _preprocess_labels(self, y):
        self.classes_ = unique_labels(y)
        n_labels = len(self.classes_)
        if n_labels == 1:
            raise ValueError("Classifier can't train when only one class "
                             "is present.")
        if self.classes_.dtype in [numpy.int32, numpy.int64]:
            self.label_to_ind_ = {int(lab): ind
                                  for ind, lab in enumerate(self.classes_)}
        else:
            self.label_to_ind_ = {lab: ind
                                  for ind, lab in enumerate(self.classes_)}
        y_ind = numpy.array(
            [self.label_to_ind_[lab] for lab in y]
        )
        y_ = to_categorical(y_ind)
        if n_labels == 2:
            y_ = y_[:, 1:]  # Keep only indicator of positive class
        return y_ 
開發者ID:tslearn-team,項目名稱:tslearn,代碼行數:21,代碼來源:shapelets.py

示例7: __init__

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def __init__(self, X, y, mode='LAL_iterative', data_path='.', cls_est=50, train_slt=True, **kwargs):
        super(QueryInstanceLAL, self).__init__(X, y)
        if len(unique_labels(self.y)) != 2:
            warnings.warn("This query strategy is implemented for binary classification only.",
                          category=FunctionWarning)
        if not os.path.isdir(data_path):
            raise ValueError("Please pass the directory of the file.")
        self._iter_path = os.path.join(data_path, 'LAL-iterativetree-simulatedunbalanced-big.npz')
        self._rand_path = os.path.join(data_path, 'LAL-randomtree-simulatedunbalanced-big.npz')
        assert mode in ['LAL_iterative', 'LAL_independent']
        self._mode = mode
        self._selector = None
        self.model = RandomForestClassifier(n_estimators=cls_est, oob_score=True, n_jobs=8)
        if train_slt:
            self.download_data()
            self.train_selector_from_file() 
開發者ID:NUAA-AL,項目名稱:ALiPy,代碼行數:18,代碼來源:query_labels.py

示例8: fit

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def fit(self, X, y):
        """
        Fit the data.

        :param X: array-like, shape=(n_columns, n_samples,) training data.
        :param y: array-like, shape=(n_samples,) training data.
        :return: Returns an instance of self.
        """
        X, y = check_X_y(X, y, estimator=self.estimator, dtype=FLOAT_DTYPES)
        if not isinstance(self.estimator, ProbabilisticClassifier):
            raise ValueError(
                "The ConfusionBalancer meta model only works on classifcation models with .predict_proba."
            )
        self.estimator.fit(X, y)
        self.classes_ = unique_labels(y)
        cfm = confusion_matrix(y, self.estimator.predict(X)).T + self.cfm_smooth
        self.cfm_ = cfm / cfm.sum(axis=1).reshape(-1, 1)
        return self 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:20,代碼來源:confusion_balancer.py

示例9: evaluate_intents

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def evaluate_intents(targets, predictions):  # pragma: no cover
    """Creates a confusion matrix and summary statistics for intent predictions.

    Only considers those examples with a set intent.
    Others are filtered out."""
    from sklearn.metrics import confusion_matrix
    from sklearn.utils.multiclass import unique_labels
    import matplotlib.pyplot as plt

    # remove empty intent targets
    num_examples = len(targets)
    targets, predictions = remove_empty_intent_examples(targets, predictions)
    logger.info("Intent Evaluation: Only considering those "
                "{} examples that have a defined intent out "
                "of {} examples".format(targets.size, num_examples))
    log_evaluation_table(targets, predictions)

    cnf_matrix = confusion_matrix(targets, predictions)
    labels = unique_labels(targets, predictions)
    plot_confusion_matrix(cnf_matrix,
                          classes=labels,
                          title='Intent Confusion matrix')

    plt.show() 
開發者ID:crownpku,項目名稱:Rasa_NLU_Chi,代碼行數:26,代碼來源:evaluate.py

示例10: fit

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def fit(self, X, y):
        """A reference implementation of a fitting function for a classifier.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The training input samples.
        y : array-like, shape (n_samples,)
            The target values. An array of int.

        Returns
        -------
        self : object
            Returns self.
        """
        # Check that X and y have correct shape
        X, y = check_X_y(X, y)
        # Store the classes seen during fit
        self.classes_ = unique_labels(y)

        self.X_ = X
        self.y_ = y
        # Return the classifier
        return self 
開發者ID:scikit-learn-contrib,項目名稱:project-template,代碼行數:26,代碼來源:_template.py

示例11: partial_fit

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def partial_fit(self, X, y, classes=None, sample_weight=None):
        """Fit the LVQ model to the given training data and parameters using
        gradient ascent.

        Parameters
        ----------
        X : array-like, shape = [n_samples, n_features]
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : numpy.ndarray of shape (n_samples, n_targets)
            An array-like with the class labels of all samples in X
        classes : numpy.ndarray, optional (default=None)
            Contains all possible/known class labels. Usage varies depending
            on the learning method.
        sample_weight : Not used.

        Returns
        --------
        self
        """
        if set(unique_labels(y)).issubset(set(self.classes_)) or \
                self.initial_fit is True:
            X, y = self._validate_train_parms(X, y, classes=classes)
        else:
            raise ValueError('Class {} was not learned - please declare all \
                             classes in first call of fit/partial_fit'
                             .format(y))

        self._optimize(X, y)
        return self 
開發者ID:scikit-multiflow,項目名稱:scikit-multiflow,代碼行數:32,代碼來源:robust_soft_learning_vector_quantization.py

示例12: test_unique_labels

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def test_unique_labels():
    # Empty iterable
    assert_raises(ValueError, unique_labels)

    # Multiclass problem
    assert_array_equal(unique_labels(range(10)), np.arange(10))
    assert_array_equal(unique_labels(np.arange(10)), np.arange(10))
    assert_array_equal(unique_labels([4, 0, 2]), np.array([0, 2, 4]))

    # Multilabel indicator
    assert_array_equal(unique_labels(np.array([[0, 0, 1],
                                               [1, 0, 1],
                                               [0, 0, 0]])),
                       np.arange(3))

    assert_array_equal(unique_labels(np.array([[0, 0, 1],
                                               [0, 0, 0]])),
                       np.arange(3))

    # Several arrays passed
    assert_array_equal(unique_labels([4, 0, 2], range(5)),
                       np.arange(5))
    assert_array_equal(unique_labels((0, 1, 2), (0,), (2, 1)),
                       np.arange(3))

    # Border line case with binary indicator matrix
    assert_raises(ValueError, unique_labels, [4, 0, 2], np.ones((5, 5)))
    assert_raises(ValueError, unique_labels, np.ones((5, 4)), np.ones((5, 5)))
    assert_array_equal(unique_labels(np.ones((4, 5)), np.ones((5, 5))),
                       np.arange(5)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:32,代碼來源:test_multiclass.py

示例13: test_unique_labels_mixed_types

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def test_unique_labels_mixed_types():
    # Mix with binary or multiclass and multilabel
    mix_clf_format = product(EXAMPLES["multilabel-indicator"],
                             EXAMPLES["multiclass"] +
                             EXAMPLES["binary"])

    for y_multilabel, y_multiclass in mix_clf_format:
        assert_raises(ValueError, unique_labels, y_multiclass, y_multilabel)
        assert_raises(ValueError, unique_labels, y_multilabel, y_multiclass)

    assert_raises(ValueError, unique_labels, [[1, 2]], [["a", "d"]])
    assert_raises(ValueError, unique_labels, ["1", 2])
    assert_raises(ValueError, unique_labels, [["1", 2], [1, 3]])
    assert_raises(ValueError, unique_labels, [["1", "2"], [2, 3]]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_multiclass.py

示例14: test_split1_allclass

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def test_split1_allclass():
    train_idx, test_idx, label_idx, unlabel_idx = split(X=X,
                                                        y=y,
                                                        all_class=True, split_count=split_count,
                                                        test_ratio=0.3, initial_label_rate=0.05,
                                                        saving_path=None,
                                                        query_type='AllLabels')
    assert len(train_idx) == split_count
    assert len(test_idx) == split_count
    assert len(label_idx) == split_count
    assert len(unlabel_idx) == split_count

    for i in range(split_count):
        train = set(train_idx[i])
        test = set(test_idx[i])
        lab = set(label_idx[i])
        unl = set(unlabel_idx[i])

        assert len(test) == round(0.3 * instance_num)
        assert len(lab) == round(0.05 * len(train))

        # validity
        traintest = train.union(test)
        labun = lab.union(unl)
        assert traintest == set(range(instance_num))
        assert labun == train

        # is all-class
        len(unique_labels(y[label_idx[i]])) == label_num 
開發者ID:NUAA-AL,項目名稱:ALiPy,代碼行數:31,代碼來源:test_split.py

示例15: fit

# 需要導入模塊: from sklearn.utils import multiclass [as 別名]
# 或者: from sklearn.utils.multiclass import unique_labels [as 別名]
def fit(self, X: np.ndarray, y: np.ndarray):
        """
        Fit the model using X, y as training data.

        :param X: array-like, shape=(n_features, n_samples)
        :param y: array-like, shape=(n_samples)
        :return: Returns an instance of self
        """
        X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)

        self.classes_ = unique_labels(y)
        self.models_, self.priors_logp_ = {}, {}
        for target_label in self.classes_:
            x_subset = X[y == target_label]

            # Computing joint distribution
            self.models_[target_label] = KernelDensity(
                bandwidth=self.bandwidth,
                kernel=self.kernel,
                algorithm=self.algorithm,
                metric=self.metric,
                atol=self.atol,
                rtol=self.rtol,
                breadth_first=self.breath_first,
                leaf_size=self.leaf_size,
                metric_params=self.metric_params,
            ).fit(x_subset)

            # Computing target class prior
            self.priors_logp_[target_label] = np.log(len(x_subset) / len(X))

        return self 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:34,代碼來源:neighbors.py


注:本文中的sklearn.utils.multiclass.unique_labels方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。