當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.utils方法代碼示例

本文整理匯總了Python中sklearn.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.utils方法的具體用法?Python sklearn.utils怎麽用?Python sklearn.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.utils方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: persist

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def persist(self, path: Text) -> None:

        if self.model:
            self.featurizer.persist(path)

            meta = {"priority": self.priority}

            meta_file = os.path.join(path, 'sklearn_policy.json')
            utils.dump_obj_as_json_to_file(meta_file, meta)

            filename = os.path.join(path, 'sklearn_model.pkl')
            with open(filename, 'wb') as f:
                pickle.dump(self._state, f)
        else:
            warnings.warn("Persist called without a trained model present. "
                          "Nothing to persist then!") 
開發者ID:RasaHQ,項目名稱:rasa_core,代碼行數:18,代碼來源:sklearn_policy.py

示例2: load

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def load(cls, path: Text) -> Policy:
        filename = os.path.join(path, 'sklearn_model.pkl')
        if not os.path.exists(path):
            raise OSError("Failed to load dialogue model. Path {} "
                          "doesn't exist".format(os.path.abspath(filename)))

        featurizer = TrackerFeaturizer.load(path)
        assert isinstance(featurizer, MaxHistoryTrackerFeaturizer), \
            ("Loaded featurizer of type {}, should be "
             "MaxHistoryTrackerFeaturizer.".format(type(featurizer).__name__))

        meta_file = os.path.join(path, "sklearn_policy.json")
        meta = json.loads(utils.read_file(meta_file))
        policy = cls(featurizer=featurizer, priority=meta["priority"])

        with open(filename, 'rb') as f:
            state = pickle.load(f)
        vars(policy).update(state)

        logger.info("Loaded sklearn model")
        return policy 
開發者ID:RasaHQ,項目名稱:rasa_core,代碼行數:23,代碼來源:sklearn_policy.py

示例3: check_is_fitted

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def check_is_fitted(estimator, attributes, msg=None, all_or_any=all):
    """Checks whether the net is initialized.

    Note: This calls ``sklearn.utils.validation.check_is_fitted``
    under the hood, using exactly the same arguments and logic. The
    only difference is that this function has an adapted error message
    and raises a ``skorch.exception.NotInitializedError`` instead of
    an ``sklearn.exceptions.NotFittedError``.

    """
    if msg is None:
        msg = ("This %(name)s instance is not initialized yet. Call "
               "'initialize' or 'fit' with appropriate arguments "
               "before using this method.")


    if not isinstance(attributes, (list, tuple)):
        attributes = [attributes]

    if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
        raise NotInitializedError(msg % {'name': type(estimator).__name__}) 
開發者ID:skorch-dev,項目名稱:skorch,代碼行數:23,代碼來源:utils.py

示例4: persist

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def persist(self, path: Text) -> None:

        if self.model:
            self.featurizer.persist(path)

            meta = {"priority": self.priority}

            meta_file = os.path.join(path, "sklearn_policy.json")
            rasa.utils.io.dump_obj_as_json_to_file(meta_file, meta)

            filename = os.path.join(path, "sklearn_model.pkl")
            rasa.utils.io.pickle_dump(filename, self._state)
        else:
            raise_warning(
                "Persist called without a trained model present. "
                "Nothing to persist then!"
            ) 
開發者ID:botfront,項目名稱:rasa-for-botfront,代碼行數:19,代碼來源:sklearn_policy.py

示例5: load

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def load(cls, path: Text) -> Policy:
        filename = os.path.join(path, "sklearn_model.pkl")
        if not os.path.exists(path):
            raise OSError(
                "Failed to load dialogue model. Path {} "
                "doesn't exist".format(os.path.abspath(filename))
            )

        featurizer = TrackerFeaturizer.load(path)
        assert isinstance(featurizer, MaxHistoryTrackerFeaturizer), (
            "Loaded featurizer of type {}, should be "
            "MaxHistoryTrackerFeaturizer.".format(type(featurizer).__name__)
        )

        meta_file = os.path.join(path, "sklearn_policy.json")
        meta = json.loads(rasa.utils.io.read_file(meta_file))

        policy = cls(featurizer=featurizer, priority=meta["priority"])

        state = rasa.utils.io.pickle_load(filename)

        vars(policy).update(state)

        logger.info("Loaded sklearn model")
        return policy 
開發者ID:botfront,項目名稱:rasa-for-botfront,代碼行數:27,代碼來源:sklearn_policy.py

示例6: test_root_import_all_completeness

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def test_root_import_all_completeness():
    EXCEPTIONS = ('utils', 'tests', 'base', 'setup', 'conftest')
    for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__,
                                               onerror=lambda _: None):
        if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS:
            continue
        assert_in(modname, sklearn.__all__) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:9,代碼來源:test_common.py

示例7: is_dataset

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def is_dataset(x):
    return isinstance(x, torch.utils.data.Dataset)


# pylint: disable=not-callable 
開發者ID:skorch-dev,項目名稱:skorch,代碼行數:7,代碼來源:utils.py

示例8: data_from_dataset

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def data_from_dataset(dataset, X_indexing=None, y_indexing=None):
    """Try to access X and y attribute from dataset.

    Also works when dataset is a subset.

    Parameters
    ----------
    dataset : skorch.dataset.Dataset or torch.utils.data.Subset
      The incoming dataset should be a ``skorch.dataset.Dataset`` or a
      ``torch.utils.data.Subset`` of a
      ``skorch.dataset.Dataset``.

    X_indexing : function/callable or None (default=None)
      If not None, use this function for indexing into the X data. If
      None, try to automatically determine how to index data.

    y_indexing : function/callable or None (default=None)
      If not None, use this function for indexing into the y data. If
      None, try to automatically determine how to index data.

    """
    X, y = _none, _none

    if isinstance(dataset, Subset):
        X, y = data_from_dataset(
            dataset.dataset, X_indexing=X_indexing, y_indexing=y_indexing)
        X = multi_indexing(X, dataset.indices, indexing=X_indexing)
        y = multi_indexing(y, dataset.indices, indexing=y_indexing)
    elif hasattr(dataset, 'X') and hasattr(dataset, 'y'):
        X, y = dataset.X, dataset.y

    if (X is _none) or (y is _none):
        raise AttributeError("Could not access X and y from dataset.")
    return X, y 
開發者ID:skorch-dev,項目名稱:skorch,代碼行數:36,代碼來源:utils.py

示例9: _check_fit_params

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def _check_fit_params(
    X,  # type: TwoDimArrayLikeType
    fit_params,  # type: Dict
    indices,  # type: OneDimArrayLikeType
):
    # type: (...) -> Dict

    fit_params_validated = {}
    for key, value in fit_params.items():

        # NOTE Original implementation:
        # https://github.com/scikit-learn/scikit-learn/blob/ \
        # 2467e1b84aeb493a22533fa15ff92e0d7c05ed1c/sklearn/utils/validation.py#L1324-L1328
        # Scikit-learn does not accept non-iterable inputs.
        # This line is for keeping backward compatibility.
        # (See: https://github.com/scikit-learn/scikit-learn/issues/15805)
        if not _is_arraylike(value) or _num_samples(value) != _num_samples(X):
            fit_params_validated[key] = value
        else:
            fit_params_validated[key] = _make_indexable(value)
            fit_params_validated[key] = _safe_indexing(fit_params_validated[key], indices)
    return fit_params_validated


# NOTE Original implementation:
# https://github.com/scikit-learn/scikit-learn/blob/ \
# 8caa93889f85254fc3ca84caa0a24a1640eebdd1/sklearn/utils/validation.py#L131-L135 
開發者ID:optuna,項目名稱:optuna,代碼行數:29,代碼來源:sklearn.py

示例10: _is_arraylike

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def _is_arraylike(x):
    # type: (Any) -> bool

    return hasattr(x, "__len__") or hasattr(x, "shape") or hasattr(x, "__array__")


# NOTE Original implementation:
# https://github.com/scikit-learn/scikit-learn/blob/ \
# 8caa93889f85254fc3ca84caa0a24a1640eebdd1/sklearn/utils/validation.py#L217-L234 
開發者ID:optuna,項目名稱:optuna,代碼行數:11,代碼來源:sklearn.py

示例11: _num_samples

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def _num_samples(x):
    # type: (ArrayLikeType) -> int

    # NOTE For dask dataframes
    # https://github.com/scikit-learn/scikit-learn/blob/ \
    # 8caa93889f85254fc3ca84caa0a24a1640eebdd1/sklearn/utils/validation.py#L155-L158
    x_shape = getattr(x, "shape", None)
    if x_shape is not None:
        if isinstance(x_shape[0], Integral):
            return int(x_shape[0])

    try:
        return len(x)
    except TypeError:
        raise TypeError("Expected sequence or array-like, got %s." % type(x)) 
開發者ID:optuna,項目名稱:optuna,代碼行數:17,代碼來源:sklearn.py

示例12: get_label_n

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def get_label_n(y, y_pred, n=None):
    """Function to turn raw outlier scores into binary labels by assign 1
    to top n outlier scores.

    Parameters
    ----------
    y : list or numpy array of shape (n_samples,)
        The ground truth. Binary (0: inliers, 1: outliers).

    y_pred : list or numpy array of shape (n_samples,)
        The raw outlier scores as returned by a fitted model.

    n : int, optional (default=None)
        The number of outliers. if not defined, infer using ground truth.

    Returns
    -------
    labels : numpy array of shape (n_samples,)
        binary labels 0: normal points and 1: outliers

    Examples
    --------
    >>> from pyod.utils.utility import get_label_n
    >>> y = [0, 1, 1, 0, 0]
    >>> y_pred = [0.1, 0.5, 0.3, 0.2, 0.7]
    >>> get_label_n(y, y_pred)
    array([0, 1, 0, 0, 1])

    """

    # enforce formats of inputs
    y = column_or_1d(y)
    y_pred = column_or_1d(y_pred)

    check_consistent_length(y, y_pred)
    y_len = len(y)  # the length of targets

    # calculate the percentage of outliers
    if n is not None:
        outliers_fraction = n / y_len
    else:
        outliers_fraction = np.count_nonzero(y) / y_len

    threshold = percentile(y_pred, 100 * (1 - outliers_fraction))
    y_pred = (y_pred > threshold).astype('int')

    return y_pred 
開發者ID:yzhao062,項目名稱:pyod,代碼行數:49,代碼來源:utility.py

示例13: initialize_intensities

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def initialize_intensities(self):
        """ Initialization: k-means of the input image """

        if self.params.logging:
            t0 = timeit.default_timer()
            print("initialization: k-means clustering with %s centers..." %
                  self.params.kmeans_n_clusters)

        image_irg = self.input.image_irg
        mask_nz = self.input.mask_nz

        if self.params.fixed_seed:
            # fix the seed when computing things like gradients across
            # hyperparameters
            random_state = np.random.RandomState(seed=59173)
        else:
            random_state = None

        samples = image_irg[mask_nz[0], mask_nz[1], :]
        if samples.shape[0] > self.params.kmeans_max_samples:
            print("image is large: subsampling %s/%s random pixels" %
                  (self.params.kmeans_max_samples, samples.shape[0]))
            samples = sklearn.utils \
                .shuffle(samples)[:self.params.kmeans_max_samples, :]
        samples[:, 0] *= self.params.kmeans_intensity_scale

        kmeans = MiniBatchKMeans(
            n_clusters=self.params.kmeans_n_clusters,
            compute_labels=False, random_state=random_state)
        kmeans.fit(samples)

        assert self.params.kmeans_intensity_scale > 0
        self.decomposition.intensities = (
            kmeans.cluster_centers_[:, 0] /
            self.params.kmeans_intensity_scale
        )
        self.decomposition.chromaticities = (
            kmeans.cluster_centers_[:, 1:3]
        )

        if self.params.logging:
            t1 = timeit.default_timer()
            print("clustering done (%s s).  intensities:\n%s" %
                  (t1 - t0, self.decomposition.intensities)) 
開發者ID:seanbell,項目名稱:intrinsic,代碼行數:46,代碼來源:solver.py


注:本文中的sklearn.utils方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。