本文整理匯總了Python中sklearn.utils方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.utils方法的具體用法?Python sklearn.utils怎麽用?Python sklearn.utils使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.utils方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: persist
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def persist(self, path: Text) -> None:
if self.model:
self.featurizer.persist(path)
meta = {"priority": self.priority}
meta_file = os.path.join(path, 'sklearn_policy.json')
utils.dump_obj_as_json_to_file(meta_file, meta)
filename = os.path.join(path, 'sklearn_model.pkl')
with open(filename, 'wb') as f:
pickle.dump(self._state, f)
else:
warnings.warn("Persist called without a trained model present. "
"Nothing to persist then!")
示例2: load
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def load(cls, path: Text) -> Policy:
filename = os.path.join(path, 'sklearn_model.pkl')
if not os.path.exists(path):
raise OSError("Failed to load dialogue model. Path {} "
"doesn't exist".format(os.path.abspath(filename)))
featurizer = TrackerFeaturizer.load(path)
assert isinstance(featurizer, MaxHistoryTrackerFeaturizer), \
("Loaded featurizer of type {}, should be "
"MaxHistoryTrackerFeaturizer.".format(type(featurizer).__name__))
meta_file = os.path.join(path, "sklearn_policy.json")
meta = json.loads(utils.read_file(meta_file))
policy = cls(featurizer=featurizer, priority=meta["priority"])
with open(filename, 'rb') as f:
state = pickle.load(f)
vars(policy).update(state)
logger.info("Loaded sklearn model")
return policy
示例3: check_is_fitted
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def check_is_fitted(estimator, attributes, msg=None, all_or_any=all):
"""Checks whether the net is initialized.
Note: This calls ``sklearn.utils.validation.check_is_fitted``
under the hood, using exactly the same arguments and logic. The
only difference is that this function has an adapted error message
and raises a ``skorch.exception.NotInitializedError`` instead of
an ``sklearn.exceptions.NotFittedError``.
"""
if msg is None:
msg = ("This %(name)s instance is not initialized yet. Call "
"'initialize' or 'fit' with appropriate arguments "
"before using this method.")
if not isinstance(attributes, (list, tuple)):
attributes = [attributes]
if not all_or_any([hasattr(estimator, attr) for attr in attributes]):
raise NotInitializedError(msg % {'name': type(estimator).__name__})
示例4: persist
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def persist(self, path: Text) -> None:
if self.model:
self.featurizer.persist(path)
meta = {"priority": self.priority}
meta_file = os.path.join(path, "sklearn_policy.json")
rasa.utils.io.dump_obj_as_json_to_file(meta_file, meta)
filename = os.path.join(path, "sklearn_model.pkl")
rasa.utils.io.pickle_dump(filename, self._state)
else:
raise_warning(
"Persist called without a trained model present. "
"Nothing to persist then!"
)
示例5: load
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def load(cls, path: Text) -> Policy:
filename = os.path.join(path, "sklearn_model.pkl")
if not os.path.exists(path):
raise OSError(
"Failed to load dialogue model. Path {} "
"doesn't exist".format(os.path.abspath(filename))
)
featurizer = TrackerFeaturizer.load(path)
assert isinstance(featurizer, MaxHistoryTrackerFeaturizer), (
"Loaded featurizer of type {}, should be "
"MaxHistoryTrackerFeaturizer.".format(type(featurizer).__name__)
)
meta_file = os.path.join(path, "sklearn_policy.json")
meta = json.loads(rasa.utils.io.read_file(meta_file))
policy = cls(featurizer=featurizer, priority=meta["priority"])
state = rasa.utils.io.pickle_load(filename)
vars(policy).update(state)
logger.info("Loaded sklearn model")
return policy
示例6: test_root_import_all_completeness
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def test_root_import_all_completeness():
EXCEPTIONS = ('utils', 'tests', 'base', 'setup', 'conftest')
for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__,
onerror=lambda _: None):
if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS:
continue
assert_in(modname, sklearn.__all__)
示例7: is_dataset
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def is_dataset(x):
return isinstance(x, torch.utils.data.Dataset)
# pylint: disable=not-callable
示例8: data_from_dataset
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def data_from_dataset(dataset, X_indexing=None, y_indexing=None):
"""Try to access X and y attribute from dataset.
Also works when dataset is a subset.
Parameters
----------
dataset : skorch.dataset.Dataset or torch.utils.data.Subset
The incoming dataset should be a ``skorch.dataset.Dataset`` or a
``torch.utils.data.Subset`` of a
``skorch.dataset.Dataset``.
X_indexing : function/callable or None (default=None)
If not None, use this function for indexing into the X data. If
None, try to automatically determine how to index data.
y_indexing : function/callable or None (default=None)
If not None, use this function for indexing into the y data. If
None, try to automatically determine how to index data.
"""
X, y = _none, _none
if isinstance(dataset, Subset):
X, y = data_from_dataset(
dataset.dataset, X_indexing=X_indexing, y_indexing=y_indexing)
X = multi_indexing(X, dataset.indices, indexing=X_indexing)
y = multi_indexing(y, dataset.indices, indexing=y_indexing)
elif hasattr(dataset, 'X') and hasattr(dataset, 'y'):
X, y = dataset.X, dataset.y
if (X is _none) or (y is _none):
raise AttributeError("Could not access X and y from dataset.")
return X, y
示例9: _check_fit_params
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def _check_fit_params(
X, # type: TwoDimArrayLikeType
fit_params, # type: Dict
indices, # type: OneDimArrayLikeType
):
# type: (...) -> Dict
fit_params_validated = {}
for key, value in fit_params.items():
# NOTE Original implementation:
# https://github.com/scikit-learn/scikit-learn/blob/ \
# 2467e1b84aeb493a22533fa15ff92e0d7c05ed1c/sklearn/utils/validation.py#L1324-L1328
# Scikit-learn does not accept non-iterable inputs.
# This line is for keeping backward compatibility.
# (See: https://github.com/scikit-learn/scikit-learn/issues/15805)
if not _is_arraylike(value) or _num_samples(value) != _num_samples(X):
fit_params_validated[key] = value
else:
fit_params_validated[key] = _make_indexable(value)
fit_params_validated[key] = _safe_indexing(fit_params_validated[key], indices)
return fit_params_validated
# NOTE Original implementation:
# https://github.com/scikit-learn/scikit-learn/blob/ \
# 8caa93889f85254fc3ca84caa0a24a1640eebdd1/sklearn/utils/validation.py#L131-L135
示例10: _is_arraylike
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def _is_arraylike(x):
# type: (Any) -> bool
return hasattr(x, "__len__") or hasattr(x, "shape") or hasattr(x, "__array__")
# NOTE Original implementation:
# https://github.com/scikit-learn/scikit-learn/blob/ \
# 8caa93889f85254fc3ca84caa0a24a1640eebdd1/sklearn/utils/validation.py#L217-L234
示例11: _num_samples
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def _num_samples(x):
# type: (ArrayLikeType) -> int
# NOTE For dask dataframes
# https://github.com/scikit-learn/scikit-learn/blob/ \
# 8caa93889f85254fc3ca84caa0a24a1640eebdd1/sklearn/utils/validation.py#L155-L158
x_shape = getattr(x, "shape", None)
if x_shape is not None:
if isinstance(x_shape[0], Integral):
return int(x_shape[0])
try:
return len(x)
except TypeError:
raise TypeError("Expected sequence or array-like, got %s." % type(x))
示例12: get_label_n
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def get_label_n(y, y_pred, n=None):
"""Function to turn raw outlier scores into binary labels by assign 1
to top n outlier scores.
Parameters
----------
y : list or numpy array of shape (n_samples,)
The ground truth. Binary (0: inliers, 1: outliers).
y_pred : list or numpy array of shape (n_samples,)
The raw outlier scores as returned by a fitted model.
n : int, optional (default=None)
The number of outliers. if not defined, infer using ground truth.
Returns
-------
labels : numpy array of shape (n_samples,)
binary labels 0: normal points and 1: outliers
Examples
--------
>>> from pyod.utils.utility import get_label_n
>>> y = [0, 1, 1, 0, 0]
>>> y_pred = [0.1, 0.5, 0.3, 0.2, 0.7]
>>> get_label_n(y, y_pred)
array([0, 1, 0, 0, 1])
"""
# enforce formats of inputs
y = column_or_1d(y)
y_pred = column_or_1d(y_pred)
check_consistent_length(y, y_pred)
y_len = len(y) # the length of targets
# calculate the percentage of outliers
if n is not None:
outliers_fraction = n / y_len
else:
outliers_fraction = np.count_nonzero(y) / y_len
threshold = percentile(y_pred, 100 * (1 - outliers_fraction))
y_pred = (y_pred > threshold).astype('int')
return y_pred
示例13: initialize_intensities
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import utils [as 別名]
def initialize_intensities(self):
""" Initialization: k-means of the input image """
if self.params.logging:
t0 = timeit.default_timer()
print("initialization: k-means clustering with %s centers..." %
self.params.kmeans_n_clusters)
image_irg = self.input.image_irg
mask_nz = self.input.mask_nz
if self.params.fixed_seed:
# fix the seed when computing things like gradients across
# hyperparameters
random_state = np.random.RandomState(seed=59173)
else:
random_state = None
samples = image_irg[mask_nz[0], mask_nz[1], :]
if samples.shape[0] > self.params.kmeans_max_samples:
print("image is large: subsampling %s/%s random pixels" %
(self.params.kmeans_max_samples, samples.shape[0]))
samples = sklearn.utils \
.shuffle(samples)[:self.params.kmeans_max_samples, :]
samples[:, 0] *= self.params.kmeans_intensity_scale
kmeans = MiniBatchKMeans(
n_clusters=self.params.kmeans_n_clusters,
compute_labels=False, random_state=random_state)
kmeans.fit(samples)
assert self.params.kmeans_intensity_scale > 0
self.decomposition.intensities = (
kmeans.cluster_centers_[:, 0] /
self.params.kmeans_intensity_scale
)
self.decomposition.chromaticities = (
kmeans.cluster_centers_[:, 1:3]
)
if self.params.logging:
t1 = timeit.default_timer()
print("clustering done (%s s). intensities:\n%s" %
(t1 - t0, self.decomposition.intensities))