本文整理匯總了Python中sklearn.utils.extmath.stable_cumsum方法的典型用法代碼示例。如果您正苦於以下問題:Python extmath.stable_cumsum方法的具體用法?Python extmath.stable_cumsum怎麽用?Python extmath.stable_cumsum使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils.extmath
的用法示例。
在下文中一共展示了extmath.stable_cumsum方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_stable_cumsum
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def test_stable_cumsum():
assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3]))
r = np.random.RandomState(0).rand(100000)
assert_warns(RuntimeWarning, stable_cumsum, r, rtol=0, atol=0)
# test axis parameter
A = np.random.RandomState(36).randint(1000, size=(5, 5, 5))
assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0))
assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1))
assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2))
示例2: _weighted_percentile
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def _weighted_percentile(array, sample_weight, percentile=50):
"""
Compute the weighted ``percentile`` of ``array`` with ``sample_weight``.
"""
sorted_idx = np.argsort(array)
# Find index of median prediction for each sample
weight_cdf = stable_cumsum(sample_weight[sorted_idx])
percentile_idx = np.searchsorted(
weight_cdf, (percentile / 100.) * weight_cdf[-1])
return array[sorted_idx[percentile_idx]]
示例3: _n_components_from_fraction
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def _n_components_from_fraction(explained_variance_ratio, frac):
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
# side='right' ensures that number of features selected
# their variance is always greater than n_components float
# passed. More discussion in issue: #15669
ratio_cumsum = stable_cumsum(explained_variance_ratio)
n_components = np.searchsorted(ratio_cumsum, frac,
side='right') + 1
return n_components
示例4: _fit_full_daal4py
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def _fit_full_daal4py(self, X, n_components):
n_samples, n_features = X.shape
# due to need to flip components, need to do full decomposition
self._fit_daal4py(X, min(n_samples, n_features))
U = self._transform_daal4py(X, whiten=True, check_X=False, scale_eigenvalues=True)
V = self.components_
U, V = svd_flip(U, V)
U = U.copy()
V = V.copy()
S = self.singular_values_.copy()
if n_components == 'mle':
n_components = \
_infer_dimension_(self.explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = stable_cumsum(self.explained_variance_ratio_)
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = self.explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = self.components_[:n_components]
self.n_components_ = n_components
self.explained_variance_ = self.explained_variance_[:n_components]
self.explained_variance_ratio_ = \
self.explained_variance_ratio_[:n_components]
self.singular_values_ = self.singular_values_[:n_components]
return U, S, V
示例5: test_stable_cumsum
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def test_stable_cumsum():
if np_version < (1, 9):
raise SkipTest("Sum is as unstable as cumsum for numpy < 1.9")
assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3]))
r = np.random.RandomState(0).rand(100000)
assert_warns(RuntimeWarning, stable_cumsum, r, rtol=0, atol=0)
# test axis parameter
A = np.random.RandomState(36).randint(1000, size=(5, 5, 5))
assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0))
assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1))
assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2))
示例6: uplift_curve
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def uplift_curve(y_true, uplift, treatment):
"""Compute Uplift curve.
For computing the area under the Uplift Curve, see :func:`.uplift_auc_score`.
Args:
y_true (1d array-like): Correct (true) target values.
uplift (1d array-like): Predicted uplift, as returned by a model.
treatment (1d array-like): Treatment labels.
Returns:
array (shape = [>2]), array (shape = [>2]): Points on a curve.
See also:
:func:`.uplift_auc_score`: Compute normalized Area Under the Uplift curve from prediction scores.
:func:`.perfect_uplift_curve`: Compute the perfect Uplift curve.
:func:`.plot_uplift_curve`: Plot Uplift curves from predictions.
:func:`.qini_curve`: Compute Qini curve.
References:
Devriendt, F., Guns, T., & Verbeke, W. (2020). Learning to rank for uplift modeling. ArXiv, abs/2002.05897.
"""
# TODO: check the treatment is binary
y_true, uplift, treatment = np.array(y_true), np.array(uplift), np.array(treatment)
desc_score_indices = np.argsort(uplift, kind="mergesort")[::-1]
y_true, uplift, treatment = y_true[desc_score_indices], uplift[desc_score_indices], treatment[desc_score_indices]
y_true_ctrl, y_true_trmnt = y_true.copy(), y_true.copy()
y_true_ctrl[treatment == 1] = 0
y_true_trmnt[treatment == 0] = 0
distinct_value_indices = np.where(np.diff(uplift))[0]
threshold_indices = np.r_[distinct_value_indices, uplift.size - 1]
num_trmnt = stable_cumsum(treatment)[threshold_indices]
y_trmnt = stable_cumsum(y_true_trmnt)[threshold_indices]
num_all = threshold_indices + 1
num_ctrl = num_all - num_trmnt
y_ctrl = stable_cumsum(y_true_ctrl)[threshold_indices]
curve_values = (np.divide(y_trmnt, num_trmnt, out=np.zeros_like(y_trmnt), where=num_trmnt != 0) -
np.divide(y_ctrl, num_ctrl, out=np.zeros_like(y_ctrl), where=num_ctrl != 0)) * num_all
if num_all.size == 0 or curve_values[0] != 0 or num_all[0] != 0:
# Add an extra threshold position if necessary
# to make sure that the curve starts at (0, 0)
num_all = np.r_[0, num_all]
curve_values = np.r_[0, curve_values]
return num_all, curve_values
示例7: qini_curve
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def qini_curve(y_true, uplift, treatment):
"""Compute Qini curve.
For computing the area under the Qini Curve, see :func:`.qini_auc_score`.
Args:
y_true (1d array-like): Correct (true) target values.
uplift (1d array-like): Predicted uplift, as returned by a model.
treatment (1d array-like): Treatment labels.
Returns:
array (shape = [>2]), array (shape = [>2]): Points on a curve.
See also:
:func:`.uplift_curve`: Compute the area under the Qini curve.
:func:`.perfect_qini_curve`: Compute the perfect Qini curve.
:func:`.plot_qini_curves`: Plot Qini curves from predictions..
:func:`.uplift_curve`: Compute Uplift curve.
References:
Nicholas J Radcliffe. (2007). Using control groups to target on predicted lift:
Building and assessing uplift model. Direct Marketing Analytics Journal, (3):14–21, 2007.
Devriendt, F., Guns, T., & Verbeke, W. (2020). Learning to rank for uplift modeling. ArXiv, abs/2002.05897.
"""
# TODO: check the treatment is binary
y_true, uplift, treatment = np.array(y_true), np.array(uplift), np.array(treatment)
desc_score_indices = np.argsort(uplift, kind="mergesort")[::-1]
y_true = y_true[desc_score_indices]
treatment = treatment[desc_score_indices]
uplift = uplift[desc_score_indices]
y_true_ctrl, y_true_trmnt = y_true.copy(), y_true.copy()
y_true_ctrl[treatment == 1] = 0
y_true_trmnt[treatment == 0] = 0
distinct_value_indices = np.where(np.diff(uplift))[0]
threshold_indices = np.r_[distinct_value_indices, uplift.size - 1]
num_trmnt = stable_cumsum(treatment)[threshold_indices]
y_trmnt = stable_cumsum(y_true_trmnt)[threshold_indices]
num_all = threshold_indices + 1
num_ctrl = num_all - num_trmnt
y_ctrl = stable_cumsum(y_true_ctrl)[threshold_indices]
curve_values = y_trmnt - y_ctrl * np.divide(num_trmnt, num_ctrl, out=np.zeros_like(num_trmnt), where=num_ctrl != 0)
if num_all.size == 0 or curve_values[0] != 0 or num_all[0] != 0:
# Add an extra threshold position if necessary
# to make sure that the curve starts at (0, 0)
num_all = np.r_[0, num_all]
curve_values = np.r_[0, curve_values]
return num_all, curve_values
示例8: _fit_daal4py
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def _fit_daal4py(self, X, n_components):
n_samples, n_features = X.shape
n_sf_min = min(n_samples, n_features)
_validate_n_components(n_components, n_samples, n_features)
if n_components == 'mle':
daal_n_components = n_features
elif n_components < 1:
daal_n_components = n_sf_min
else:
daal_n_components = n_components
fpType = getFPType(X)
centering_algo = daal4py.normalization_zscore(
fptype=fpType, doScale=False)
pca_alg = daal4py.pca(
fptype=fpType,
method='svdDense',
normalization=centering_algo,
resultsToCompute='mean|variance|eigenvalue',
isDeterministic=True,
nComponents=daal_n_components
)
pca_res = pca_alg.compute(X)
self.mean_ = pca_res.means.ravel()
variances_ = pca_res.variances.ravel()
components_ = pca_res.eigenvectors
explained_variance_ = pca_res.eigenvalues.ravel()
tot_var = explained_variance_.sum()
explained_variance_ratio_ = explained_variance_ / tot_var
if n_components == 'mle':
n_components = \
_infer_dimension_(explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = stable_cumsum(explained_variance_ratio_)
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < n_sf_min:
if explained_variance_.shape[0] == n_sf_min:
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
resid_var_ = variances_.sum()
resid_var_ -= explained_variance_[:n_components].sum()
self.noise_variance_ = resid_var_ / (n_sf_min - n_components)
else:
self.noise_variance_ = 0.
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = components_[:n_components]
self.n_components_ = n_components
self.explained_variance_ = explained_variance_[:n_components]
self.explained_variance_ratio_ = \
explained_variance_ratio_[:n_components]
self.singular_values_ = np.sqrt((n_samples - 1) * self.explained_variance_)
示例9: _fit_full_vanilla
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import stable_cumsum [as 別名]
def _fit_full_vanilla(self, X, n_components):
"""Fit the model by computing full SVD on X"""
n_samples, n_features = X.shape
# Center data
self.mean_ = np.mean(X, axis=0)
X -= self.mean_
U, S, V = np.linalg.svd(X, full_matrices=False)
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U, V)
components_ = V
# Get variance explained by singular values
explained_variance_ = (S ** 2) / (n_samples - 1)
total_var = explained_variance_.sum()
explained_variance_ratio_ = explained_variance_ / total_var
# Postprocess the number of components required
if n_components == 'mle':
n_components = \
_infer_dimension_(explained_variance_, n_samples, n_features)
elif 0 < n_components < 1.0:
# number of components for which the cumulated explained
# variance percentage is superior to the desired threshold
ratio_cumsum = stable_cumsum(explained_variance_ratio_)
n_components = np.searchsorted(ratio_cumsum, n_components) + 1
# Compute noise covariance using Probabilistic PCA model
# The sigma2 maximum likelihood (cf. eq. 12.46)
if n_components < min(n_features, n_samples):
self.noise_variance_ = explained_variance_[n_components:].mean()
else:
self.noise_variance_ = 0.
self.n_samples_, self.n_features_ = n_samples, n_features
self.components_ = components_[:n_components]
self.n_components_ = n_components
self.explained_variance_ = explained_variance_[:n_components]
self.explained_variance_ratio_ = \
explained_variance_ratio_[:n_components]
self.singular_values_ = S[:n_components]
return U, S, V