本文整理匯總了Python中sklearn.utils.extmath.row_norms方法的典型用法代碼示例。如果您正苦於以下問題:Python extmath.row_norms方法的具體用法?Python extmath.row_norms怎麽用?Python extmath.row_norms使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils.extmath
的用法示例。
在下文中一共展示了extmath.row_norms方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_row_norms
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def test_row_norms():
X = np.random.RandomState(42).randn(100, 100)
for dtype in (np.float32, np.float64):
if dtype is np.float32:
precision = 4
else:
precision = 5
X = X.astype(dtype)
sq_norm = (X ** 2).sum(axis=1)
assert_array_almost_equal(sq_norm, row_norms(X, squared=True),
precision)
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision)
Xcsr = sparse.csr_matrix(X, dtype=dtype)
assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True),
precision)
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr), precision)
示例2: predict
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def predict(self, X):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
return _labels_inertia(X, x_squared_norms, self.cluster_centers_)[0]
示例3: score
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def score(self, X, y=None):
"""Opposite of the value of X on the K-means objective.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data.
Returns
-------
score : float
Opposite of the value of X on the K-means objective.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
x_squared_norms = row_norms(X, squared=True)
return -_labels_inertia(X, x_squared_norms, self.cluster_centers_)[1]
示例4: test_row_norms
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def test_row_norms(dtype):
X = np.random.RandomState(42).randn(100, 100)
if dtype is np.float32:
precision = 4
else:
precision = 5
X = X.astype(dtype, copy=False)
sq_norm = (X ** 2).sum(axis=1)
assert_array_almost_equal(sq_norm, row_norms(X, squared=True),
precision)
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision)
for csr_index_dtype in [np.int32, np.int64]:
Xcsr = sparse.csr_matrix(X, dtype=dtype)
# csr_matrix will use int32 indices by default,
# up-casting those to int64 when necessary
if csr_index_dtype is np.int64:
Xcsr.indptr = Xcsr.indptr.astype(csr_index_dtype, copy=False)
Xcsr.indices = Xcsr.indices.astype(csr_index_dtype, copy=False)
assert Xcsr.indices.dtype == csr_index_dtype
assert Xcsr.indptr.dtype == csr_index_dtype
assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True),
precision)
assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr),
precision)
示例5: test_labels_assignment_and_inertia
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def test_labels_assignment_and_inertia():
# pure numpy implementation as easily auditable reference gold
# implementation
rng = np.random.RandomState(42)
noisy_centers = centers + rng.normal(size=centers.shape)
labels_gold = np.full(n_samples, -1, dtype=np.int)
mindist = np.empty(n_samples)
mindist.fill(np.infty)
for center_id in range(n_clusters):
dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1)
labels_gold[dist < mindist] = center_id
mindist = np.minimum(dist, mindist)
inertia_gold = mindist.sum()
assert (mindist >= 0.0).all()
assert (labels_gold != -1).all()
sample_weight = None
# perform label assignment using the dense array input
x_squared_norms = (X ** 2).sum(axis=1)
labels_array, inertia_array = _labels_inertia(
X, sample_weight, x_squared_norms, noisy_centers)
assert_array_almost_equal(inertia_array, inertia_gold)
assert_array_equal(labels_array, labels_gold)
# perform label assignment using the sparse CSR input
x_squared_norms_from_csr = row_norms(X_csr, squared=True)
labels_csr, inertia_csr = _labels_inertia(
X_csr, sample_weight, x_squared_norms_from_csr, noisy_centers)
assert_array_almost_equal(inertia_csr, inertia_gold)
assert_array_equal(labels_csr, labels_gold)
示例6: predict
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def predict(self, X, sample_weight=None):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
check_is_fitted(self)
X = self._check_test_data(X)
daal_ready = sample_weight is None and hasattr(X, '__array__') # or sp.isspmatrix_csr(X)
if daal_ready:
logging.info("sklearn.cluster.KMeans.predict: " + method_uses_daal)
return _daal4py_k_means_predict(X, self.n_clusters, self.cluster_centers_)[0]
else:
logging.info("sklearn.cluster.KMeans.predict: " + method_uses_sklearn)
x_squared_norms = row_norms(X, squared=True)
return _labels_inertia(X, sample_weight, x_squared_norms,
self.cluster_centers_)[0]
示例7: predict
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def predict(self, X, sample_weight=None):
"""Predict the closest cluster each sample in X belongs to.
In the vector quantization literature, `cluster_centers_` is called
the code book and each value returned by `predict` is the index of
the closest code in the code book.
Parameters
----------
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
New data to predict.
sample_weight : array-like, shape (n_samples,), optional
The weights for each observation in X. If None, all observations
are assigned equal weight (default: None)
Returns
-------
labels : array, shape [n_samples,]
Index of the cluster each sample belongs to.
"""
check_is_fitted(self, 'cluster_centers_')
X = self._check_test_data(X)
daal_ready = sample_weight is None and hasattr(X, '__array__') # or sp.isspmatrix_csr(X)
if daal_ready:
logging.info("sklearn.cluster.KMeans.predict: " + method_uses_daal)
return _daal4py_k_means_predict(X, self.n_clusters, self.cluster_centers_)[0]
else:
logging.info("sklearn.cluster.KMeans.predict: " + method_uses_sklearn)
x_squared_norms = row_norms(X, squared=True)
return _labels_inertia(X, sample_weight, x_squared_norms,
self.cluster_centers_)[0]
示例8: row_norms
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def row_norms(X, squared=False):
if isinstance(X, np.ndarray):
return skm.row_norms(X, squared=squared)
return X.map_blocks(
skm.row_norms, chunks=(X.chunks[0],), drop_axis=1, squared=squared
)
示例9: test_labels_assignment_and_inertia
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def test_labels_assignment_and_inertia():
# pure numpy implementation as easily auditable reference gold
# implementation
rng = np.random.RandomState(42)
noisy_centers = centers + rng.normal(size=centers.shape)
labels_gold = - np.ones(n_samples, dtype=np.int)
mindist = np.empty(n_samples)
mindist.fill(np.infty)
for center_id in range(n_clusters):
dist = np.sum((X - noisy_centers[center_id]) ** 2, axis=1)
labels_gold[dist < mindist] = center_id
mindist = np.minimum(dist, mindist)
inertia_gold = mindist.sum()
assert_true((mindist >= 0.0).all())
assert_true((labels_gold != -1).all())
# perform label assignment using the dense array input
x_squared_norms = (X ** 2).sum(axis=1)
labels_array, inertia_array = _labels_inertia(
X, x_squared_norms, noisy_centers)
assert_array_almost_equal(inertia_array, inertia_gold)
assert_array_equal(labels_array, labels_gold)
# perform label assignment using the sparse CSR input
x_squared_norms_from_csr = row_norms(X_csr, squared=True)
labels_csr, inertia_csr = _labels_inertia(
X_csr, x_squared_norms_from_csr, noisy_centers)
assert_array_almost_equal(inertia_csr, inertia_gold)
assert_array_equal(labels_csr, labels_gold)
示例10: test_get_auto_step_size
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def test_get_auto_step_size():
X = np.array([[1, 2, 3], [2, 3, 4], [2, 3, 2]], dtype=np.float64)
alpha = 1.2
fit_intercept = False
# sum the squares of the second sample because that's the largest
max_squared_sum = 4 + 9 + 16
max_squared_sum_ = row_norms(X, squared=True).max()
n_samples = X.shape[0]
assert_almost_equal(max_squared_sum, max_squared_sum_, decimal=4)
for saga in [True, False]:
for fit_intercept in (True, False):
if saga:
L_sqr = (max_squared_sum + alpha + int(fit_intercept))
L_log = (max_squared_sum + 4.0 * alpha +
int(fit_intercept)) / 4.0
mun_sqr = min(2 * n_samples * alpha, L_sqr)
mun_log = min(2 * n_samples * alpha, L_log)
step_size_sqr = 1 / (2 * L_sqr + mun_sqr)
step_size_log = 1 / (2 * L_log + mun_log)
else:
step_size_sqr = 1.0 / (max_squared_sum +
alpha + int(fit_intercept))
step_size_log = 4.0 / (max_squared_sum + 4.0 * alpha +
int(fit_intercept))
step_size_sqr_ = get_auto_step_size(max_squared_sum_, alpha,
"squared",
fit_intercept,
n_samples=n_samples,
is_saga=saga)
step_size_log_ = get_auto_step_size(max_squared_sum_, alpha, "log",
fit_intercept,
n_samples=n_samples,
is_saga=saga)
assert_almost_equal(step_size_sqr, step_size_sqr_, decimal=4)
assert_almost_equal(step_size_log, step_size_log_, decimal=4)
msg = 'Unknown loss function for SAG solver, got wrong instead of'
assert_raise_message(ValueError, msg, get_auto_step_size,
max_squared_sum_, alpha, "wrong", fit_intercept)
示例11: _daal4py_check
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def _daal4py_check(self, X, y, check_input):
_fptype = getFPType(X)
#check alpha
if self.alpha == 0:
warnings.warn("With alpha=0, this algorithm does not converge "
"well. You are advised to use the LinearRegression "
"estimator", stacklevel=2)
#check precompute
if isinstance(self.precompute, np.ndarray):
if check_input:
check_array(self.precompute, dtype=_fptype)
self.precompute = make2d(self.precompute)
#only for compliance with Sklearn
if self.fit_intercept:
X_offset = np.average(X, axis=0, weights=None)
if self.normalize:
X_scale = row_norms(X)
if np.isscalar(X_scale):
if X_scale == .0:
X_scale = 1.
elif isinstance(X_scale, np.ndarray):
X_scale[X_scale == 0.0] = 1.0
else:
X_scale = np.ones(X.shape[1], dtype=_fptype)
else:
X_offset = np.zeros(X.shape[1], dtype=_fptype)
X_scale = np.ones(X.shape[1], dtype=_fptype)
if (self.fit_intercept and not np.allclose(X_offset, np.zeros(X.shape[1])) or
self.normalize and not np.allclose(X_scale, np.ones(X.shape[1]))):
warnings.warn("Gram matrix was provided but X was centered"
" to fit intercept, "
"or X was normalized : recomputing Gram matrix.",
UserWarning)
else:
if self.precompute not in [False, True, 'auto']:
raise ValueError("precompute should be one of True, False, "
"'auto' or array-like. Got %r" % self.precompute)
#check selection
if self.selection not in ['random', 'cyclic']:
raise ValueError("selection should be either random or cyclic.")
示例12: fit
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def fit(self, neigh_dist: np.ndarray, neigh_ind: np.ndarray, X: np.ndarray,
assume_sorted: bool = True, *args, **kwargs) -> DisSimLocal:
""" Fit the model using X, neigh_dist, and neigh_ind as training data.
Parameters
----------
neigh_dist: np.ndarray, shape (n_samples, n_neighbors)
Distance matrix of training objects (rows) against their
individual k nearest neighbors (colums).
neigh_ind: np.ndarray, shape (n_samples, n_neighbors)
Neighbor indices corresponding to the values in neigh_dist.
X: np.ndarray, shape (n_samples, n_features)
Training data, where n_samples is the number of vectors,
and n_features their dimensionality (number of features).
assume_sorted: bool, default = True
Assume input matrices are sorted according to neigh_dist.
If False, these are sorted here.
"""
# Check equal number of rows and columns
check_consistent_length(neigh_ind, neigh_dist)
check_consistent_length(neigh_ind.T, neigh_dist.T)
X = check_array(X)
try:
if self.k <= 0:
raise ValueError(f"Expected k > 0. Got {self.k}")
except TypeError:
raise TypeError(f'Expected k: int > 0. Got {self.k}')
k = self.k
if k > neigh_ind.shape[1]:
warnings.warn(f'Neighborhood parameter k larger than provided neighbors in neigh_dist, neigh_ind. '
f'Will reduce to k={neigh_ind.shape[1]}.')
k = neigh_ind.shape[1]
# Calculate local neighborhood centroids among the training points
if assume_sorted:
knn = neigh_ind[:, :k]
else:
mask = np.argpartition(neigh_dist, kth=k-1)[:, :k]
knn = np.take_along_axis(neigh_ind, mask, axis=1)
centroids = X[knn].mean(axis=1)
dist_to_cent = row_norms(X - centroids, squared=True)
self.X_train_ = X
self.X_train_centroids_ = centroids
self.X_train_dist_to_centroids_ = dist_to_cent
return self
示例13: fit
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def fit(self, X, y):
"""Fit factorization machine to training data.
Parameters
----------
X : array-like or sparse, shape = [n_samples, n_features]
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : Estimator
Returns self.
"""
if self.degree > 3:
raise ValueError("FMs with degree >3 not yet supported.")
X, y = self._check_X_y(X, y)
X = self._augment(X)
n_features = X.shape[1] # augmented
X_col_norms = row_norms(X.T, squared=True)
dataset = get_dataset(X, order="fortran")
rng = check_random_state(self.random_state)
loss_obj = self._get_loss(self.loss)
if not (self.warm_start and hasattr(self, 'w_')):
self.w_ = np.zeros(n_features, dtype=np.double)
if self.fit_lower == 'explicit':
n_orders = self.degree - 1
else:
n_orders = 1
if not (self.warm_start and hasattr(self, 'P_')):
self.P_ = 0.01 * rng.randn(n_orders, self.n_components, n_features)
if not (self.warm_start and hasattr(self, 'lams_')):
if self.init_lambdas == 'ones':
self.lams_ = np.ones(self.n_components)
elif self.init_lambdas == 'random_signs':
self.lams_ = np.sign(rng.randn(self.n_components))
else:
raise ValueError("Lambdas must be initialized as ones "
"(init_lambdas='ones') or as random "
"+/- 1 (init_lambdas='random_signs').")
y_pred = self._get_output(X)
converged, self.n_iter_ = _cd_direct_ho(
self.P_, self.w_, dataset, X_col_norms, y, y_pred,
self.lams_, self.degree, self.alpha, self.beta, self.fit_linear,
self.fit_lower == 'explicit', loss_obj, self.max_iter,
self.tol, self.verbose)
if not converged:
warnings.warn("Objective did not converge. Increase max_iter.")
return self
示例14: test_sub_kmeans
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import row_norms [as 別名]
def test_sub_kmeans(self):
def conv(scope, operator, container):
X = operator.inputs[0]
out = operator.outputs
op = operator.raw_operator
C = op.cluster_centers_
C2 = row_norms(C, squared=True).astype(container.dtype)
C = C.astype(container.dtype)
rs = OnnxReduceSumSquare(
X, axes=[1], keepdims=1,
op_version=container.target_opset)
N = X.type.shape[0]
if isinstance(N, int):
zeros = np.zeros((N, ))
else:
zeros = OnnxMul(
rs, np.array([0], dtype=np.float32),
op_version=container.target_opset)
z = OnnxAdd(
rs,
OnnxGemm(
X, C, zeros, alpha=-2., transB=1,
op_version=container.target_opset),
op_version=container.target_opset)
y2 = OnnxAdd(C2, z, op_version=container.target_opset)
lo = OnnxArgMin(
y2, axis=1, keepdims=0, output_names=out[:1],
op_version=container.target_opset)
y2s = OnnxSqrt(
y2, output_names=out[1:],
op_version=container.target_opset)
lo.add_to(scope, container)
y2s.add_to(scope, container)
data = load_iris()
X = data.data
model = KMeans(n_clusters=3)
model.fit(X)
model_onnx = convert_sklearn(
model, 'a-kmeans',
[('input', FloatTensorType([None, X.shape[1]]))],
custom_conversion_functions={KMeans: conv},
target_opset=TARGET_OPSET)
dump_data_and_model(X.astype(np.float32)[40:60], model, model_onnx,
basename="SklearnKMeansCustom-Dec4")