本文整理匯總了Python中sklearn.utils.extmath.randomized_svd方法的典型用法代碼示例。如果您正苦於以下問題:Python extmath.randomized_svd方法的具體用法?Python extmath.randomized_svd怎麽用?Python extmath.randomized_svd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils.extmath
的用法示例。
在下文中一共展示了extmath.randomized_svd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _svd_step
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _svd_step(self, X, shrinkage_value, max_rank=None):
"""
Returns reconstructed X from low-rank thresholded SVD and
the rank achieved.
"""
if max_rank:
# if we have a max rank then perform the faster randomized SVD
(U, s, V) = randomized_svd(
X,
max_rank,
n_iter=self.n_power_iterations)
else:
# perform a full rank SVD using ARPACK
(U, s, V) = np.linalg.svd(
X,
full_matrices=False,
compute_uv=True)
s_thresh = np.maximum(s - shrinkage_value, 0)
rank = (s_thresh > 0).sum()
s_thresh = s_thresh[:rank]
U_thresh = U[:, :rank]
V_thresh = V[:rank, :]
S_thresh = np.diag(s_thresh)
X_reconstruction = np.dot(U_thresh, np.dot(S_thresh, V_thresh))
return X_reconstruction, rank
示例2: decompose_trajectory_matrix
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def decompose_trajectory_matrix(trajectory_matrix, K, svd_method='randomized'):
# calculate S matrix
# https://arxiv.org/pdf/1309.5050.pdf
S = np.dot(trajectory_matrix, trajectory_matrix.T)
# Perform SVD on S
if svd_method == 'randomized':
U, s, V = randomized_svd(S, K)
elif svd_method == 'exact':
U, s, V = np.linalg.svd(S)
# Valid rank is only where eigenvalues > 0
rank = np.sum(s > 0)
# singular values are the square root of the eigenvalues
s = np.sqrt(s)
return U, s, V, rank
示例3: ksvd
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def ksvd(Y, D, X, n_cycles=1, verbose=True):
n_atoms = D.shape[1]
n_features, n_samples = Y.shape
unused_atoms = []
R = Y - fast_dot(D, X)
for c in range(n_cycles):
for k in range(n_atoms):
if verbose:
sys.stdout.write("\r" + "k-svd..." + ":%3.2f%%" % ((k / float(n_atoms)) * 100))
sys.stdout.flush()
# find all the datapoints that use the kth atom
omega_k = X[k, :] != 0
if not np.any(omega_k):
unused_atoms.append(k)
continue
# the residual due to all the other atoms but k
Rk = R[:, omega_k] + np.outer(D[:, k], X[k, omega_k])
U, S, V = randomized_svd(Rk, n_components=1, n_iter=10, flip_sign=False)
D[:, k] = U[:, 0]
X[k, omega_k] = V[0, :] * S[0]
# update the residual
R[:, omega_k] = Rk - np.outer(D[:, k], X[k, omega_k])
print ""
return D, X, unused_atoms
示例4: _fit_principal
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _fit_principal(self, X):
"""
Fit the factor analysis model using a principal
factor analysis solution.
Parameters
----------
X : array-like
The full data set.
Returns
-------
loadings : numpy array
The factor loadings matrix.
"""
# standardize the data
X = X.copy()
X = (X - X.mean(0)) / X.std(0)
# perform the randomized singular value decomposition
U, S, V = randomized_svd(X, self.n_factors)
corr_mtx = np.dot(X, V.T)
loadings = np.array([[pearsonr(x, c)[0] for c in corr_mtx.T] for x in X.T])
return loadings
示例5: make_synthetic_data
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def make_synthetic_data(ppmi, counts, word_subset, new_weight, num_synth=10,
old_pos=OLD_POS, new_pos=NEW_POS, old_neg=OLD_NEG, new_neg=NEW_NEG, dim=300, seed_offset=0):
#print new_weight
#ppmi = ppmi.get_subembed(word_subset, restrict_context=False)
amel_vecs = []
print "Sampling positive..."
for i in xrange(num_synth):
amel_vecs.append(_sample_vec2(new_pos, old_neg, counts, new_weight, seed=i+seed_offset))
amel_mat = vstack(amel_vecs)
pejor_vecs = []
print "Sampling negative..."
for i in xrange(num_synth):
pejor_vecs.append(_sample_vec2(old_pos, new_neg, counts, 1-new_weight, seed=i+num_synth+seed_offset))
pejor_mat = vstack(pejor_vecs)
print "Making matrix..."
# ppmi_mat = vstack([ppmi.m, amel_mat, pejor_mat])
u = vstack([counts.m, amel_mat, pejor_mat])
print "SVD on matrix..."
# u, s, v = randomized_svd(ppmi_mat, n_components=dim, n_iter=2)
new_vocab = ppmi.iw
new_vocab.extend(['a-{0:d}'.format(i) for i in range(num_synth)])
new_vocab.extend(['p-{0:d}'.format(i) for i in range(num_synth)])
return Embedding(u, new_vocab)
示例6: fit
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def fit(self, num_factors=100, topK = None, random_seed = None):
self._print("Computing SVD decomposition...")
U, Sigma, QT = randomized_svd(self.URM_train,
n_components=num_factors,
#n_iter=5,
random_state = random_seed)
if topK is None:
topK = self.n_items
W_sparse = compute_W_sparse_from_item_latent_factors(QT.T, topK=topK)
self.W_sparse = sps.csr_matrix(W_sparse)
self._print("Computing SVD decomposition... Done!")
示例7: tsvd_rand
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def tsvd_rand(matrix, n_components):
"""
Sparse randomized tSVD for fast embedding
"""
l = matrix.shape[0]
# Is this csc conversion necessary?
smat = sparse.csc_matrix(matrix)
U, Sigma, VT = randomized_svd(smat,
n_components=n_components,
n_iter=5, random_state=None)
U = U * np.sqrt(Sigma)
U = preprocessing.normalize(U, "l2")
return U
示例8: test_randomized_svd_low_rank_with_noise
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_low_rank_with_noise():
# Check that extmath.randomized_svd can handle noisy matrices
n_samples = 100
n_features = 500
rank = 5
k = 10
# generate a matrix X wity structure approximate rank `rank` and an
# important noisy component
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=0.1,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
# compute the singular values of X using the slow exact method
_, s, _ = linalg.svd(X, full_matrices=False)
for normalizer in ['auto', 'none', 'LU', 'QR']:
# compute the singular values of X using the fast approximate
# method without the iterated power method
_, sa, _ = randomized_svd(X, k, n_iter=0,
power_iteration_normalizer=normalizer,
random_state=0)
# the approximation does not tolerate the noise:
assert_greater(np.abs(s[:k] - sa).max(), 0.01)
# compute the singular values of X using the fast approximate
# method with iterated power method
_, sap, _ = randomized_svd(X, k,
power_iteration_normalizer=normalizer,
random_state=0)
# the iterated power method is helping getting rid of the noise:
assert_almost_equal(s[:k], sap, decimal=3)
示例9: test_randomized_svd_infinite_rank
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_infinite_rank():
# Check that extmath.randomized_svd can handle noisy matrices
n_samples = 100
n_features = 500
rank = 5
k = 10
# let us try again without 'low_rank component': just regularly but slowly
# decreasing singular values: the rank of the data matrix is infinite
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=1.0,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
# compute the singular values of X using the slow exact method
_, s, _ = linalg.svd(X, full_matrices=False)
for normalizer in ['auto', 'none', 'LU', 'QR']:
# compute the singular values of X using the fast approximate method
# without the iterated power method
_, sa, _ = randomized_svd(X, k, n_iter=0,
power_iteration_normalizer=normalizer)
# the approximation does not tolerate the noise:
assert_greater(np.abs(s[:k] - sa).max(), 0.1)
# compute the singular values of X using the fast approximate method
# with iterated power method
_, sap, _ = randomized_svd(X, k, n_iter=5,
power_iteration_normalizer=normalizer)
# the iterated power method is still managing to get most of the
# structure at the requested rank
assert_almost_equal(s[:k], sap, decimal=3)
示例10: test_randomized_svd_transpose_consistency
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_transpose_consistency():
# Check that transposing the design matrix has limited impact
n_samples = 100
n_features = 500
rank = 4
k = 10
X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
effective_rank=rank, tail_strength=0.5,
random_state=0)
assert_equal(X.shape, (n_samples, n_features))
U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False,
random_state=0)
U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True,
random_state=0)
U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto',
random_state=0)
U4, s4, V4 = linalg.svd(X, full_matrices=False)
assert_almost_equal(s1, s4[:k], decimal=3)
assert_almost_equal(s2, s4[:k], decimal=3)
assert_almost_equal(s3, s4[:k], decimal=3)
assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]),
decimal=2)
assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]),
decimal=2)
# in this case 'auto' is equivalent to transpose
assert_almost_equal(s2, s3)
示例11: test_randomized_svd_power_iteration_normalizer
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_power_iteration_normalizer():
# randomized_svd with power_iteration_normalized='none' diverges for
# large number of power iterations on this dataset
rng = np.random.RandomState(42)
X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng)
X += 3 * rng.randint(0, 2, size=X.shape)
n_components = 50
# Check that it diverges with many (non-normalized) power iterations
U, s, V = randomized_svd(X, n_components, n_iter=2,
power_iteration_normalizer='none')
A = X - U.dot(np.diag(s).dot(V))
error_2 = linalg.norm(A, ord='fro')
U, s, V = randomized_svd(X, n_components, n_iter=20,
power_iteration_normalizer='none')
A = X - U.dot(np.diag(s).dot(V))
error_20 = linalg.norm(A, ord='fro')
assert_greater(np.abs(error_2 - error_20), 100)
for normalizer in ['LU', 'QR', 'auto']:
U, s, V = randomized_svd(X, n_components, n_iter=2,
power_iteration_normalizer=normalizer,
random_state=0)
A = X - U.dot(np.diag(s).dot(V))
error_2 = linalg.norm(A, ord='fro')
for i in [5, 10, 50]:
U, s, V = randomized_svd(X, n_components, n_iter=i,
power_iteration_normalizer=normalizer,
random_state=0)
A = X - U.dot(np.diag(s).dot(V))
error = linalg.norm(A, ord='fro')
assert_greater(15, np.abs(error_2 - error))
示例12: test_randomized_svd_sparse_warnings
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_sparse_warnings():
# randomized_svd throws a warning for lil and dok matrix
rng = np.random.RandomState(42)
X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng)
n_components = 5
for cls in (sparse.lil_matrix, sparse.dok_matrix):
X = cls(X)
assert_warns_message(
sparse.SparseEfficiencyWarning,
"Calculating SVD of a {} is expensive. "
"csr_matrix is more efficient.".format(cls.__name__),
randomized_svd, X, n_components, n_iter=1,
power_iteration_normalizer='none')
示例13: test_randomized_svd_sign_flip_with_transpose
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_sign_flip_with_transpose():
# Check if the randomized_svd sign flipping is always done based on u
# irrespective of transpose.
# See https://github.com/scikit-learn/scikit-learn/issues/5608
# for more details.
def max_loading_is_positive(u, v):
"""
returns bool tuple indicating if the values maximising np.abs
are positive across all rows for u and across all columns for v.
"""
u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all()
v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all()
return u_based, v_based
mat = np.arange(10 * 8).reshape(10, -1)
# Without transpose
u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True)
u_based, v_based = max_loading_is_positive(u_flipped, v_flipped)
assert u_based
assert not v_based
# With transpose
u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd(
mat, 3, flip_sign=True, transpose=True)
u_based, v_based = max_loading_is_positive(
u_flipped_with_transpose, v_flipped_with_transpose)
assert u_based
assert not v_based
示例14: _my_svd
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _my_svd(M, k, algorithm):
if algorithm == 'randomized':
(U, S, V) = randomized_svd(
M, n_components=min(k, M.shape[1]-1), n_oversamples=20)
elif algorithm == 'arpack':
(U, S, V) = svds(M, k=min(k, min(M.shape)-1))
S = S[::-1]
U, V = svd_flip(U[:, ::-1], V[::-1])
else:
raise ValueError("unknown algorithm")
return (U, S, V)
示例15: _get_embedding_rand
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _get_embedding_rand(self, matrix):
# Sparse randomized tSVD for fast embedding
t1 = time.time()
l = matrix.shape[0]
smat = sp.csc_matrix(matrix) # convert to sparse CSC format
print("svd sparse", smat.data.shape[0] * 1.0 / l ** 2)
U, Sigma, VT = randomized_svd(
smat, n_components=self.dimension, n_iter=5, random_state=None
)
U = U * np.sqrt(Sigma)
U = preprocessing.normalize(U, "l2")
print("sparsesvd time", time.time() - t1)
return U