當前位置: 首頁>>代碼示例>>Python>>正文


Python extmath.randomized_svd方法代碼示例

本文整理匯總了Python中sklearn.utils.extmath.randomized_svd方法的典型用法代碼示例。如果您正苦於以下問題:Python extmath.randomized_svd方法的具體用法?Python extmath.randomized_svd怎麽用?Python extmath.randomized_svd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.utils.extmath的用法示例。


在下文中一共展示了extmath.randomized_svd方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _svd_step

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _svd_step(self, X, shrinkage_value, max_rank=None):
        """
        Returns reconstructed X from low-rank thresholded SVD and
        the rank achieved.
        """
        if max_rank:
            # if we have a max rank then perform the faster randomized SVD
            (U, s, V) = randomized_svd(
                X,
                max_rank,
                n_iter=self.n_power_iterations)
        else:
            # perform a full rank SVD using ARPACK
            (U, s, V) = np.linalg.svd(
                X,
                full_matrices=False,
                compute_uv=True)
        s_thresh = np.maximum(s - shrinkage_value, 0)
        rank = (s_thresh > 0).sum()
        s_thresh = s_thresh[:rank]
        U_thresh = U[:, :rank]
        V_thresh = V[:rank, :]
        S_thresh = np.diag(s_thresh)
        X_reconstruction = np.dot(U_thresh, np.dot(S_thresh, V_thresh))
        return X_reconstruction, rank 
開發者ID:YyzHarry,項目名稱:ME-Net,代碼行數:27,代碼來源:soft_impute.py

示例2: decompose_trajectory_matrix

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def decompose_trajectory_matrix(trajectory_matrix, K, svd_method='randomized'):
    # calculate S matrix
    # https://arxiv.org/pdf/1309.5050.pdf
    S = np.dot(trajectory_matrix, trajectory_matrix.T)

    # Perform SVD on S
    if svd_method == 'randomized':
        U, s, V = randomized_svd(S, K)
    elif svd_method == 'exact':
        U, s, V = np.linalg.svd(S)

    # Valid rank is only where eigenvalues > 0
    rank = np.sum(s > 0)

    # singular values are the square root of the eigenvalues
    s = np.sqrt(s)

    return U, s, V, rank 
開發者ID:kieferk,項目名稱:pymssa,代碼行數:20,代碼來源:ops.py

示例3: ksvd

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def ksvd(Y, D, X, n_cycles=1, verbose=True):
    n_atoms = D.shape[1]
    n_features, n_samples = Y.shape
    unused_atoms = []
    R = Y - fast_dot(D, X)

    for c in range(n_cycles):
        for k in range(n_atoms):
            if verbose:
                sys.stdout.write("\r" + "k-svd..." + ":%3.2f%%" % ((k / float(n_atoms)) * 100))
                sys.stdout.flush()
            # find all the datapoints that use the kth atom
            omega_k = X[k, :] != 0
            if not np.any(omega_k):
                unused_atoms.append(k)
                continue
            # the residual due to all the other atoms but k
            Rk = R[:, omega_k] + np.outer(D[:, k], X[k, omega_k])
            U, S, V = randomized_svd(Rk, n_components=1, n_iter=10, flip_sign=False)
            D[:, k] = U[:, 0]
            X[k, omega_k] = V[0, :] * S[0]
            # update the residual
            R[:, omega_k] = Rk - np.outer(D[:, k], X[k, omega_k])
        print ""
    return D, X, unused_atoms 
開發者ID:ektormak,項目名稱:Lyssandra,代碼行數:27,代碼來源:ksvd.py

示例4: _fit_principal

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _fit_principal(self, X):
        """
        Fit the factor analysis model using a principal
        factor analysis solution.

        Parameters
        ----------
        X : array-like
            The full data set.

        Returns
        -------
        loadings : numpy array
            The factor loadings matrix.
        """
        # standardize the data
        X = X.copy()
        X = (X - X.mean(0)) / X.std(0)

        # perform the randomized singular value decomposition
        U, S, V = randomized_svd(X, self.n_factors)
        corr_mtx = np.dot(X, V.T)
        loadings = np.array([[pearsonr(x, c)[0] for c in corr_mtx.T] for x in X.T])
        return loadings 
開發者ID:EducationalTestingService,項目名稱:factor_analyzer,代碼行數:26,代碼來源:factor_analyzer.py

示例5: make_synthetic_data

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def make_synthetic_data(ppmi, counts, word_subset, new_weight, num_synth=10, 
        old_pos=OLD_POS, new_pos=NEW_POS, old_neg=OLD_NEG, new_neg=NEW_NEG, dim=300, seed_offset=0):
    #print new_weight
    #ppmi = ppmi.get_subembed(word_subset, restrict_context=False)
    amel_vecs = [] 
    print "Sampling positive..."
    for i in xrange(num_synth):
        amel_vecs.append(_sample_vec2(new_pos, old_neg, counts, new_weight, seed=i+seed_offset))
    amel_mat = vstack(amel_vecs)
    pejor_vecs = []
    print "Sampling negative..."
    for i in xrange(num_synth):
        pejor_vecs.append(_sample_vec2(old_pos, new_neg, counts, 1-new_weight, seed=i+num_synth+seed_offset))
    pejor_mat = vstack(pejor_vecs)
    print "Making matrix..."
#    ppmi_mat = vstack([ppmi.m, amel_mat, pejor_mat]) 
    u = vstack([counts.m, amel_mat, pejor_mat]) 
    print "SVD on matrix..."
#    u, s, v = randomized_svd(ppmi_mat, n_components=dim, n_iter=2)
    new_vocab = ppmi.iw
    new_vocab.extend(['a-{0:d}'.format(i) for i in range(num_synth)])
    new_vocab.extend(['p-{0:d}'.format(i) for i in range(num_synth)])
    return Embedding(u, new_vocab) 
開發者ID:williamleif,項目名稱:socialsent,代碼行數:25,代碼來源:synthetic_test.py

示例6: fit

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def fit(self, num_factors=100, topK = None, random_seed = None):

        self._print("Computing SVD decomposition...")

        U, Sigma, QT = randomized_svd(self.URM_train,
                                      n_components=num_factors,
                                      #n_iter=5,
                                      random_state = random_seed)

        if topK is None:
            topK = self.n_items

        W_sparse = compute_W_sparse_from_item_latent_factors(QT.T, topK=topK)

        self.W_sparse = sps.csr_matrix(W_sparse)

        self._print("Computing SVD decomposition... Done!") 
開發者ID:MaurizioFD,項目名稱:RecSys2019_DeepLearning_Evaluation,代碼行數:19,代碼來源:PureSVDRecommender.py

示例7: tsvd_rand

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def tsvd_rand(matrix, n_components):
        """
        Sparse randomized tSVD for fast embedding
        """
        l = matrix.shape[0]
        # Is this csc conversion necessary?
        smat = sparse.csc_matrix(matrix)
        U, Sigma, VT = randomized_svd(smat, 
            n_components=n_components, 
            n_iter=5, random_state=None)
        U = U * np.sqrt(Sigma)
        U = preprocessing.normalize(U, "l2")
        return U 
開發者ID:VHRanger,項目名稱:nodevectors,代碼行數:15,代碼來源:prone.py

示例8: test_randomized_svd_low_rank_with_noise

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_low_rank_with_noise():
    # Check that extmath.randomized_svd can handle noisy matrices
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # generate a matrix X wity structure approximate rank `rank` and an
    # important noisy component
    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=0.1,
                             random_state=0)
    assert_equal(X.shape, (n_samples, n_features))

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)

    for normalizer in ['auto', 'none', 'LU', 'QR']:
        # compute the singular values of X using the fast approximate
        # method without the iterated power method
        _, sa, _ = randomized_svd(X, k, n_iter=0,
                                  power_iteration_normalizer=normalizer,
                                  random_state=0)

        # the approximation does not tolerate the noise:
        assert_greater(np.abs(s[:k] - sa).max(), 0.01)

        # compute the singular values of X using the fast approximate
        # method with iterated power method
        _, sap, _ = randomized_svd(X, k,
                                   power_iteration_normalizer=normalizer,
                                   random_state=0)

        # the iterated power method is helping getting rid of the noise:
        assert_almost_equal(s[:k], sap, decimal=3) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:37,代碼來源:test_extmath.py

示例9: test_randomized_svd_infinite_rank

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_infinite_rank():
    # Check that extmath.randomized_svd can handle noisy matrices
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # let us try again without 'low_rank component': just regularly but slowly
    # decreasing singular values: the rank of the data matrix is infinite
    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=1.0,
                             random_state=0)
    assert_equal(X.shape, (n_samples, n_features))

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)
    for normalizer in ['auto', 'none', 'LU', 'QR']:
        # compute the singular values of X using the fast approximate method
        # without the iterated power method
        _, sa, _ = randomized_svd(X, k, n_iter=0,
                                  power_iteration_normalizer=normalizer)

        # the approximation does not tolerate the noise:
        assert_greater(np.abs(s[:k] - sa).max(), 0.1)

        # compute the singular values of X using the fast approximate method
        # with iterated power method
        _, sap, _ = randomized_svd(X, k, n_iter=5,
                                   power_iteration_normalizer=normalizer)

        # the iterated power method is still managing to get most of the
        # structure at the requested rank
        assert_almost_equal(s[:k], sap, decimal=3) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:35,代碼來源:test_extmath.py

示例10: test_randomized_svd_transpose_consistency

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_transpose_consistency():
    # Check that transposing the design matrix has limited impact
    n_samples = 100
    n_features = 500
    rank = 4
    k = 10

    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=0.5,
                             random_state=0)
    assert_equal(X.shape, (n_samples, n_features))

    U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False,
                                random_state=0)
    U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True,
                                random_state=0)
    U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto',
                                random_state=0)
    U4, s4, V4 = linalg.svd(X, full_matrices=False)

    assert_almost_equal(s1, s4[:k], decimal=3)
    assert_almost_equal(s2, s4[:k], decimal=3)
    assert_almost_equal(s3, s4[:k], decimal=3)

    assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]),
                        decimal=2)
    assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]),
                        decimal=2)

    # in this case 'auto' is equivalent to transpose
    assert_almost_equal(s2, s3) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:33,代碼來源:test_extmath.py

示例11: test_randomized_svd_power_iteration_normalizer

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_power_iteration_normalizer():
    # randomized_svd with power_iteration_normalized='none' diverges for
    # large number of power iterations on this dataset
    rng = np.random.RandomState(42)
    X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng)
    X += 3 * rng.randint(0, 2, size=X.shape)
    n_components = 50

    # Check that it diverges with many (non-normalized) power iterations
    U, s, V = randomized_svd(X, n_components, n_iter=2,
                             power_iteration_normalizer='none')
    A = X - U.dot(np.diag(s).dot(V))
    error_2 = linalg.norm(A, ord='fro')
    U, s, V = randomized_svd(X, n_components, n_iter=20,
                             power_iteration_normalizer='none')
    A = X - U.dot(np.diag(s).dot(V))
    error_20 = linalg.norm(A, ord='fro')
    assert_greater(np.abs(error_2 - error_20), 100)

    for normalizer in ['LU', 'QR', 'auto']:
        U, s, V = randomized_svd(X, n_components, n_iter=2,
                                 power_iteration_normalizer=normalizer,
                                 random_state=0)
        A = X - U.dot(np.diag(s).dot(V))
        error_2 = linalg.norm(A, ord='fro')

        for i in [5, 10, 50]:
            U, s, V = randomized_svd(X, n_components, n_iter=i,
                                     power_iteration_normalizer=normalizer,
                                     random_state=0)
            A = X - U.dot(np.diag(s).dot(V))
            error = linalg.norm(A, ord='fro')
            assert_greater(15, np.abs(error_2 - error)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:35,代碼來源:test_extmath.py

示例12: test_randomized_svd_sparse_warnings

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_sparse_warnings():
    # randomized_svd throws a warning for lil and dok matrix
    rng = np.random.RandomState(42)
    X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng)
    n_components = 5
    for cls in (sparse.lil_matrix, sparse.dok_matrix):
        X = cls(X)
        assert_warns_message(
            sparse.SparseEfficiencyWarning,
            "Calculating SVD of a {} is expensive. "
            "csr_matrix is more efficient.".format(cls.__name__),
            randomized_svd, X, n_components, n_iter=1,
            power_iteration_normalizer='none') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_extmath.py

示例13: test_randomized_svd_sign_flip_with_transpose

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def test_randomized_svd_sign_flip_with_transpose():
    # Check if the randomized_svd sign flipping is always done based on u
    # irrespective of transpose.
    # See https://github.com/scikit-learn/scikit-learn/issues/5608
    # for more details.
    def max_loading_is_positive(u, v):
        """
        returns bool tuple indicating if the values maximising np.abs
        are positive across all rows for u and across all columns for v.
        """
        u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all()
        v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all()
        return u_based, v_based

    mat = np.arange(10 * 8).reshape(10, -1)

    # Without transpose
    u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True)
    u_based, v_based = max_loading_is_positive(u_flipped, v_flipped)
    assert u_based
    assert not v_based

    # With transpose
    u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd(
        mat, 3, flip_sign=True, transpose=True)
    u_based, v_based = max_loading_is_positive(
        u_flipped_with_transpose, v_flipped_with_transpose)
    assert u_based
    assert not v_based 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:31,代碼來源:test_extmath.py

示例14: _my_svd

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _my_svd(M, k, algorithm):
    if algorithm == 'randomized':
        (U, S, V) = randomized_svd(
            M, n_components=min(k, M.shape[1]-1), n_oversamples=20)
    elif algorithm == 'arpack':
        (U, S, V) = svds(M, k=min(k, min(M.shape)-1))
        S = S[::-1]
        U, V = svd_flip(U[:, ::-1], V[::-1])
    else:
        raise ValueError("unknown algorithm")
    return (U, S, V) 
開發者ID:tonyduan,項目名稱:matrix-completion,代碼行數:13,代碼來源:svt_solver.py

示例15: _get_embedding_rand

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import randomized_svd [as 別名]
def _get_embedding_rand(self, matrix):
        # Sparse randomized tSVD for fast embedding
        t1 = time.time()
        l = matrix.shape[0]
        smat = sp.csc_matrix(matrix)  # convert to sparse CSC format
        print("svd sparse", smat.data.shape[0] * 1.0 / l ** 2)
        U, Sigma, VT = randomized_svd(
            smat, n_components=self.dimension, n_iter=5, random_state=None
        )
        U = U * np.sqrt(Sigma)
        U = preprocessing.normalize(U, "l2")
        print("sparsesvd time", time.time() - t1)
        return U 
開發者ID:imsheridan,項目名稱:CogDL-TensorFlow,代碼行數:15,代碼來源:prone.py


注:本文中的sklearn.utils.extmath.randomized_svd方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。