當前位置: 首頁>>代碼示例>>Python>>正文


Python extmath.cartesian方法代碼示例

本文整理匯總了Python中sklearn.utils.extmath.cartesian方法的典型用法代碼示例。如果您正苦於以下問題:Python extmath.cartesian方法的具體用法?Python extmath.cartesian怎麽用?Python extmath.cartesian使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.utils.extmath的用法示例。


在下文中一共展示了extmath.cartesian方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_cartesian

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def test_cartesian():
    # Check if cartesian product delivers the right results

    axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7]))

    true_out = np.array([[1, 4, 6],
                         [1, 4, 7],
                         [1, 5, 6],
                         [1, 5, 7],
                         [2, 4, 6],
                         [2, 4, 7],
                         [2, 5, 6],
                         [2, 5, 7],
                         [3, 4, 6],
                         [3, 4, 7],
                         [3, 5, 6],
                         [3, 5, 7]])

    out = cartesian(axes)
    assert_array_equal(true_out, out)

    # check single axis
    x = np.arange(3)
    assert_array_equal(x[:, np.newaxis], cartesian((x,))) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_extmath.py

示例2: __init__

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def __init__(self, Complex, space, size, grid_spacing=1, grid_bounds=[-1e2,1e2]):
        super(EnergyGridSampler, self).__init__(Complex, space, size)
        self.best_energy = 1e100
        self.best_positions = self.positions
        self.grid_spacing = grid_spacing
        self.grid_bounds = grid_bounds
        self.grid = cartesian((np.linspace(self.grid_bounds[0],self.grid_bounds[1],grid_spacing),
                              np.linspace(self.grid_bounds[0],self.grid_bounds[1],grid_spacing),
                              np.linspace(self.grid_bounds[0],self.grid_bounds[1],grid_spacing)))
        self.mask = np.apply_along_axis(self.space.is_in, self.grid, axis=0)
        grid = []
        for position, truth in zip(self.grid, self.mask):
            if truth:
                grid.append(position)
        self.grid = np.array(grid) 
開發者ID:igemsoftware2017,項目名稱:AiGEM_TeamHeidelberg2017,代碼行數:17,代碼來源:Core.py

示例3: __init__

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def __init__(self):
    self.factor_sizes = [4, 24, 183]
    features = cartesian([np.array(list(range(i))) for i in self.factor_sizes])
    self.latent_factor_indices = [0, 1, 2]
    self.num_total_factors = features.shape[1]
    self.index = util.StateSpaceAtomIndex(self.factor_sizes, features)
    self.state_space = util.SplitDiscreteStateSpace(self.factor_sizes,
                                                    self.latent_factor_indices)
    self.data_shape = [64, 64, 3]
    self.images = self._load_data() 
開發者ID:google-research,項目名稱:disentanglement_lib,代碼行數:12,代碼來源:cars3d.py

示例4: get_neighbors

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def get_neighbors(ijk, shape, neighbors='faces'):
    """
    Returns indices of neighbors to `ijk` in array of shape `shape`

    Parameters
    ----------
    ijk : array_like
        Indices of coordinates of interest
    shape : tuple
        Tuple indicating shape of array from which `ijk` is drawn
    neighbors : str, optional
        One of ['faces', 'edges', 'corners']. Default: 'faces'

    Returns
    -------
    inds : tuple of tuples
        Indices of neighbors to `ijk` (includes input coordinates)
    """

    neigh = ['faces', 'edges', 'corners']
    if neighbors not in neigh:
        raise ValueError('Provided neighbors {} not valid. Must be one of {}.'
                         .format(neighbors, neigh))

    ijk = np.asarray(ijk)
    if ijk.ndim != 2:
        ijk = ijk[np.newaxis]
    if ijk.shape[-1] != len(shape):
        raise ValueError('Provided coordinate {} needs to have same '
                         'dimensions as provided shape {}'.format(ijk, shape))

    dist = np.sqrt(neigh.index(neighbors) + 1)
    xyz = cartesian([range(i) for i in shape])
    inds = tuple(map(tuple, xyz[np.ravel(cdist(ijk, xyz) <= dist)].T))

    return inds 
開發者ID:rmarkello,項目名稱:snfpy,代碼行數:38,代碼來源:cv.py

示例5: compute_reward

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def compute_reward(grid_map, cell_list, passenger_list, rew):
    """
    Compute the reward matrix.

    Args:
        grid_map (list): list containing the grid structure;
        cell_list (list): list of non-wall cells;
        passenger_list (list): list of passenger cells;
        rew (tuple): rewards obtained in goal states.

    Returns:
        The reward matrix.

    """
    g = np.array(grid_map)
    c = np.array(cell_list)
    n_states = len(cell_list) * 2**len(passenger_list)
    r = np.zeros((n_states, 4, n_states))
    directions = [[-1, 0], [1, 0], [0, -1], [0, 1]]
    passenger_states = cartesian([[0, 1]] * len(passenger_list))

    for goal in np.argwhere(g == 'G'):
        for a in range(len(directions)):
            prev_state = goal - directions[a]
            if prev_state in c:
                for i in range(len(passenger_states)):
                    i_idx = np.where((c == prev_state).all(axis=1))[0] + len(
                        cell_list) * i
                    j_idx = j = np.where((c == goal).all(axis=1))[0] + len(
                        cell_list) * i

                    r[i_idx, a, j_idx] = rew[np.sum(passenger_states[i])]

    return r 
開發者ID:MushroomRL,項目名稱:mushroom-rl,代碼行數:36,代碼來源:taxi.py

示例6: compute_overlap

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def compute_overlap(mat1, mat2):
    s1 = mat1.shape[0]
    s2 = mat2.shape[0]
    area1 = (mat1[:, 2] - mat1[:, 0]) * (mat1[:, 3] - mat1[:, 1])
    if mat2.shape[1] == 5:
        area2 = mat2[:, 4]
    else:
        area2 = (mat2[:, 2] - mat2[:, 0]) * (mat2[:, 3] - mat2[:, 1])

    x1 = cartesian([mat1[:, 0], mat2[:, 0]])

    x1 = np.amax(x1, axis=1)
    x2 = cartesian([mat1[:, 2], mat2[:, 2]])
    x2 = np.amin(x2, axis=1)
    com_zero = np.zeros(x2.shape[0])
    w = x2 - x1
    w = w - 1

    w = np.maximum(com_zero, w)

    y1 = cartesian([mat1[:, 1], mat2[:, 1]])
    y1 = np.amax(y1, axis=1)
    y2 = cartesian([mat1[:, 3], mat2[:, 3]])
    y2 = np.amin(y2, axis=1)
    h = y2 - y1
    h = h - 1
    h = np.maximum(com_zero, h)

    oo = w * h

    aa = cartesian([area1[:], area2[:]])
    aa = np.sum(aa, axis=1)

    ooo = oo / (aa - oo)

    overlap = np.transpose(ooo.reshape(s1, s2), (1, 0))

    return overlap 
開發者ID:huangshiyu13,項目名稱:RPNplus,代碼行數:40,代碼來源:data_engine.py

示例7: zrand_convolve

# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def zrand_convolve(labelgrid, neighbors='edges', return_std=False, n_proc=-1):
    """
    Calculates the avg and std z-Rand index using kernel over `labelgrid`

    Kernel is determined by `neighbors`, which can include all entries with
    touching edges (i.e., 4 neighbors) or corners (i.e., 8 neighbors).

    Parameters
    ----------
    grid : (S, K, N) array_like
        Array containing cluster labels for each `N` samples, where `S` is mu
        and `K` is K.
    neighbors : str, optional
        How many neighbors to consider when calculating Z-rand kernel. Must be
        in ['edges', 'corners']. Default: 'edges'
    return_std : bool, optional
        Whether to return `zrand_std` in addition to `zrand_avg`. Default: True

    Returns
    -------
    zrand_avg : (S, K) np.ndarray
        Array containing average of the z-Rand index calculated using provided
        neighbor kernel
    zrand_std : (S, K) np.ndarray
        Array containing standard deviation of the z-Rand index
    """

    def _get_zrand(ijk):
        ninds = get_neighbors(ijk, shape=shape, neighbors=neighbors)
        return zrand_partitions(labelgrid[ninds].T)

    shape = labelgrid.shape[:-1]
    inds = cartesian([range(i) for i in shape])

    if use_joblib:
        _zr = Parallel(n_jobs=n_proc)(delayed(_get_zrand)(ijk) for ijk in inds)
    else:
        _zr = [_get_zrand(ijk) for ijk in inds]

    zr = np.empty(shape=shape + (2,))
    for ijk, z in zip(inds, _zr):
        zr[tuple(ijk)] = z

    if return_std:
        return zr[..., 0], zr[..., 1]

    return zr[..., 0] 
開發者ID:rmarkello,項目名稱:snfpy,代碼行數:49,代碼來源:cv.py


注:本文中的sklearn.utils.extmath.cartesian方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。