本文整理匯總了Python中sklearn.utils.extmath.cartesian方法的典型用法代碼示例。如果您正苦於以下問題:Python extmath.cartesian方法的具體用法?Python extmath.cartesian怎麽用?Python extmath.cartesian使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils.extmath
的用法示例。
在下文中一共展示了extmath.cartesian方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_cartesian
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def test_cartesian():
# Check if cartesian product delivers the right results
axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7]))
true_out = np.array([[1, 4, 6],
[1, 4, 7],
[1, 5, 6],
[1, 5, 7],
[2, 4, 6],
[2, 4, 7],
[2, 5, 6],
[2, 5, 7],
[3, 4, 6],
[3, 4, 7],
[3, 5, 6],
[3, 5, 7]])
out = cartesian(axes)
assert_array_equal(true_out, out)
# check single axis
x = np.arange(3)
assert_array_equal(x[:, np.newaxis], cartesian((x,)))
示例2: __init__
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def __init__(self, Complex, space, size, grid_spacing=1, grid_bounds=[-1e2,1e2]):
super(EnergyGridSampler, self).__init__(Complex, space, size)
self.best_energy = 1e100
self.best_positions = self.positions
self.grid_spacing = grid_spacing
self.grid_bounds = grid_bounds
self.grid = cartesian((np.linspace(self.grid_bounds[0],self.grid_bounds[1],grid_spacing),
np.linspace(self.grid_bounds[0],self.grid_bounds[1],grid_spacing),
np.linspace(self.grid_bounds[0],self.grid_bounds[1],grid_spacing)))
self.mask = np.apply_along_axis(self.space.is_in, self.grid, axis=0)
grid = []
for position, truth in zip(self.grid, self.mask):
if truth:
grid.append(position)
self.grid = np.array(grid)
示例3: __init__
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def __init__(self):
self.factor_sizes = [4, 24, 183]
features = cartesian([np.array(list(range(i))) for i in self.factor_sizes])
self.latent_factor_indices = [0, 1, 2]
self.num_total_factors = features.shape[1]
self.index = util.StateSpaceAtomIndex(self.factor_sizes, features)
self.state_space = util.SplitDiscreteStateSpace(self.factor_sizes,
self.latent_factor_indices)
self.data_shape = [64, 64, 3]
self.images = self._load_data()
示例4: get_neighbors
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def get_neighbors(ijk, shape, neighbors='faces'):
"""
Returns indices of neighbors to `ijk` in array of shape `shape`
Parameters
----------
ijk : array_like
Indices of coordinates of interest
shape : tuple
Tuple indicating shape of array from which `ijk` is drawn
neighbors : str, optional
One of ['faces', 'edges', 'corners']. Default: 'faces'
Returns
-------
inds : tuple of tuples
Indices of neighbors to `ijk` (includes input coordinates)
"""
neigh = ['faces', 'edges', 'corners']
if neighbors not in neigh:
raise ValueError('Provided neighbors {} not valid. Must be one of {}.'
.format(neighbors, neigh))
ijk = np.asarray(ijk)
if ijk.ndim != 2:
ijk = ijk[np.newaxis]
if ijk.shape[-1] != len(shape):
raise ValueError('Provided coordinate {} needs to have same '
'dimensions as provided shape {}'.format(ijk, shape))
dist = np.sqrt(neigh.index(neighbors) + 1)
xyz = cartesian([range(i) for i in shape])
inds = tuple(map(tuple, xyz[np.ravel(cdist(ijk, xyz) <= dist)].T))
return inds
示例5: compute_reward
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def compute_reward(grid_map, cell_list, passenger_list, rew):
"""
Compute the reward matrix.
Args:
grid_map (list): list containing the grid structure;
cell_list (list): list of non-wall cells;
passenger_list (list): list of passenger cells;
rew (tuple): rewards obtained in goal states.
Returns:
The reward matrix.
"""
g = np.array(grid_map)
c = np.array(cell_list)
n_states = len(cell_list) * 2**len(passenger_list)
r = np.zeros((n_states, 4, n_states))
directions = [[-1, 0], [1, 0], [0, -1], [0, 1]]
passenger_states = cartesian([[0, 1]] * len(passenger_list))
for goal in np.argwhere(g == 'G'):
for a in range(len(directions)):
prev_state = goal - directions[a]
if prev_state in c:
for i in range(len(passenger_states)):
i_idx = np.where((c == prev_state).all(axis=1))[0] + len(
cell_list) * i
j_idx = j = np.where((c == goal).all(axis=1))[0] + len(
cell_list) * i
r[i_idx, a, j_idx] = rew[np.sum(passenger_states[i])]
return r
示例6: compute_overlap
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def compute_overlap(mat1, mat2):
s1 = mat1.shape[0]
s2 = mat2.shape[0]
area1 = (mat1[:, 2] - mat1[:, 0]) * (mat1[:, 3] - mat1[:, 1])
if mat2.shape[1] == 5:
area2 = mat2[:, 4]
else:
area2 = (mat2[:, 2] - mat2[:, 0]) * (mat2[:, 3] - mat2[:, 1])
x1 = cartesian([mat1[:, 0], mat2[:, 0]])
x1 = np.amax(x1, axis=1)
x2 = cartesian([mat1[:, 2], mat2[:, 2]])
x2 = np.amin(x2, axis=1)
com_zero = np.zeros(x2.shape[0])
w = x2 - x1
w = w - 1
w = np.maximum(com_zero, w)
y1 = cartesian([mat1[:, 1], mat2[:, 1]])
y1 = np.amax(y1, axis=1)
y2 = cartesian([mat1[:, 3], mat2[:, 3]])
y2 = np.amin(y2, axis=1)
h = y2 - y1
h = h - 1
h = np.maximum(com_zero, h)
oo = w * h
aa = cartesian([area1[:], area2[:]])
aa = np.sum(aa, axis=1)
ooo = oo / (aa - oo)
overlap = np.transpose(ooo.reshape(s1, s2), (1, 0))
return overlap
示例7: zrand_convolve
# 需要導入模塊: from sklearn.utils import extmath [as 別名]
# 或者: from sklearn.utils.extmath import cartesian [as 別名]
def zrand_convolve(labelgrid, neighbors='edges', return_std=False, n_proc=-1):
"""
Calculates the avg and std z-Rand index using kernel over `labelgrid`
Kernel is determined by `neighbors`, which can include all entries with
touching edges (i.e., 4 neighbors) or corners (i.e., 8 neighbors).
Parameters
----------
grid : (S, K, N) array_like
Array containing cluster labels for each `N` samples, where `S` is mu
and `K` is K.
neighbors : str, optional
How many neighbors to consider when calculating Z-rand kernel. Must be
in ['edges', 'corners']. Default: 'edges'
return_std : bool, optional
Whether to return `zrand_std` in addition to `zrand_avg`. Default: True
Returns
-------
zrand_avg : (S, K) np.ndarray
Array containing average of the z-Rand index calculated using provided
neighbor kernel
zrand_std : (S, K) np.ndarray
Array containing standard deviation of the z-Rand index
"""
def _get_zrand(ijk):
ninds = get_neighbors(ijk, shape=shape, neighbors=neighbors)
return zrand_partitions(labelgrid[ninds].T)
shape = labelgrid.shape[:-1]
inds = cartesian([range(i) for i in shape])
if use_joblib:
_zr = Parallel(n_jobs=n_proc)(delayed(_get_zrand)(ijk) for ijk in inds)
else:
_zr = [_get_zrand(ijk) for ijk in inds]
zr = np.empty(shape=shape + (2,))
for ijk, z in zip(inds, _zr):
zr[tuple(ijk)] = z
if return_std:
return zr[..., 0], zr[..., 1]
return zr[..., 0]