本文整理匯總了Python中sklearn.utils.deprecated方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.deprecated方法的具體用法?Python utils.deprecated怎麽用?Python utils.deprecated使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils
的用法示例。
在下文中一共展示了utils.deprecated方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit_predict
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def fit_predict(self, X, y=None):
"""Fit detector first and then predict whether a particular sample
is an outlier or not. y is ignored in unsupervised models.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
outlier_labels : numpy array of shape (n_samples,)
For each observation, tells whether or not
it should be considered as an outlier according to the
fitted model. 0 stands for inliers and 1 for outliers.
.. deprecated:: 0.6.9
`fit_predict` will be removed in pyod 0.8.0.; it will be
replaced by calling `fit` function first and then accessing
`labels_` attribute for consistency.
"""
self.fit(X, y)
return self.labels_
示例2: get_params
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def get_params(self, deep=True):
"""Get parameters for this estimator.
See http://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
and sklearn/base.py for more information.
Parameters
----------
deep : bool, optional (default=True)
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : mapping of string to any
Parameter names mapped to their values.
"""
out = dict()
for key in self._get_param_names():
# We need deprecation warnings to always be on in order to
# catch deprecated param values.
# This is set in utils/__init__.py but it gets overwritten
# when running under python3 somehow.
warnings.simplefilter("always", DeprecationWarning)
try:
with warnings.catch_warnings(record=True) as w:
value = getattr(self, key, None)
if len(w) and w[0].category == DeprecationWarning:
# if the parameter is deprecated, don't show it
continue
finally:
warnings.filters.pop(0)
# XXX: should we rather test if instance of estimator?
if deep and hasattr(value, 'get_params'):
deep_items = value.get_params().items()
out.update((key + '__' + k, val) for k, val in deep_items)
out[key] = value
return out
示例3: fake_mldata
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def fake_mldata(columns_dict, dataname, matfile, ordering=None):
"""Create a fake mldata data set.
.. deprecated:: 0.20
Will be removed in version 0.22
Parameters
----------
columns_dict : dict, keys=str, values=ndarray
Contains data as columns_dict[column_name] = array of data.
dataname : string
Name of data set.
matfile : string or file object
The file name string or the file-like object of the output file.
ordering : list, default None
List of column_names, determines the ordering in the data set.
Notes
-----
This function transposes all arrays, while fetch_mldata only transposes
'data', keep that into account in the tests.
"""
datasets = dict(columns_dict)
# transpose all variables
for name in datasets:
datasets[name] = datasets[name].T
if ordering is None:
ordering = sorted(list(datasets.keys()))
# NOTE: setting up this array is tricky, because of the way Matlab
# re-packages 1D arrays
datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)),
dtype='object')
for i, name in enumerate(ordering):
datasets['mldata_descr_ordering'][0, i] = name
scipy.io.savemat(matfile, datasets, oned_as='column')
示例4: test_check_fit_score_takes_y_works_on_deprecated_fit
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_check_fit_score_takes_y_works_on_deprecated_fit():
# Tests that check_fit_score_takes_y works on a class with
# a deprecated fit method
class TestEstimatorWithDeprecatedFitMethod(BaseEstimator):
@deprecated("Deprecated for the purpose of testing "
"check_fit_score_takes_y")
def fit(self, X, y):
return self
check_fit_score_takes_y("test", TestEstimatorWithDeprecatedFitMethod())
示例5: test_check_array_warn_on_dtype_deprecation
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_check_array_warn_on_dtype_deprecation():
X = np.asarray([[0.0], [1.0]])
Y = np.asarray([[2.0], [3.0]])
with pytest.warns(DeprecationWarning,
match="'warn_on_dtype' is deprecated"):
check_array(X, warn_on_dtype=True)
with pytest.warns(DeprecationWarning,
match="'warn_on_dtype' is deprecated"):
check_X_y(X, Y, warn_on_dtype=True)
示例6: test_has_fit_parameter
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_has_fit_parameter():
assert not has_fit_parameter(KNeighborsClassifier, "sample_weight")
assert has_fit_parameter(RandomForestRegressor, "sample_weight")
assert has_fit_parameter(SVR, "sample_weight")
assert has_fit_parameter(SVR(), "sample_weight")
class TestClassWithDeprecatedFitMethod:
@deprecated("Deprecated for the purpose of testing has_fit_parameter")
def fit(self, X, y, sample_weight=None):
pass
assert has_fit_parameter(TestClassWithDeprecatedFitMethod,
"sample_weight"), \
"has_fit_parameter fails for class with deprecated fit method."
示例7: test_deprecated
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_deprecated():
# Test whether the deprecated decorator issues appropriate warnings
# Copied almost verbatim from https://docs.python.org/library/warnings.html
# First a function...
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
@deprecated()
def ham():
return "spam"
spam = ham()
assert_equal(spam, "spam") # function must remain usable
assert_equal(len(w), 1)
assert issubclass(w[0].category, DeprecationWarning)
assert "deprecated" in str(w[0].message).lower()
# ... then a class.
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
@deprecated("don't use this")
class Ham:
SPAM = 1
ham = Ham()
assert hasattr(ham, "SPAM")
assert_equal(len(w), 1)
assert issubclass(w[0].category, DeprecationWarning)
assert "deprecated" in str(w[0].message).lower()
示例8: support_vectors_time_series_
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def support_vectors_time_series_(self, X=None):
warnings.warn('The use of '
'`support_vectors_time_series_` is deprecated in '
'tslearn v0.4 and will be removed in v0.6. Use '
'`support_vectors_` property instead.')
check_is_fitted(self, '_X_fit')
return self._X_fit[self.svm_estimator_.support_]
示例9: test_deprecated
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_deprecated():
# Test whether the deprecated decorator issues appropriate warnings
# Copied almost verbatim from http://docs.python.org/library/warnings.html
# First a function...
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
@deprecated()
def ham():
return "spam"
spam = ham()
assert_equal(spam, "spam") # function must remain usable
assert_equal(len(w), 1)
assert_true(issubclass(w[0].category, DeprecationWarning))
assert_true("deprecated" in str(w[0].message).lower())
# ... then a class.
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
@deprecated("don't use this")
class Ham(object):
SPAM = 1
ham = Ham()
assert_true(hasattr(ham, "SPAM"))
assert_equal(len(w), 1)
assert_true(issubclass(w[0].category, DeprecationWarning))
assert_true("deprecated" in str(w[0].message).lower())
示例10: __init__
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def __init__(self, a=None, b=None):
self.a = a
if b is not None:
DeprecationWarning("b is deprecated and renamed 'a'")
self.a = b
示例11: test_clone_copy_init_params
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_clone_copy_init_params():
# test for deprecation warning when copying or casting an init parameter
est = ModifyInitParams()
message = ("Estimator ModifyInitParams modifies parameters in __init__. "
"This behavior is deprecated as of 0.18 and support "
"for this behavior will be removed in 0.20.")
assert_warns_message(DeprecationWarning, message, clone, est)
示例12: test_get_params_deprecated
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import deprecated [as 別名]
def test_get_params_deprecated():
# deprecated attribute should not show up as params
est = DeprecatedAttributeEstimator(a=1)
assert_true('a' in est.get_params())
assert_true('a' in est.get_params(deep=True))
assert_true('a' in est.get_params(deep=False))
assert_true('b' not in est.get_params())
assert_true('b' not in est.get_params(deep=True))
assert_true('b' not in est.get_params(deep=False))