本文整理匯總了Python中sklearn.utils.column_or_1d方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.column_or_1d方法的具體用法?Python utils.column_or_1d怎麽用?Python utils.column_or_1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.utils
的用法示例。
在下文中一共展示了utils.column_or_1d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: evaluate_print
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def evaluate_print(clf_name, y, y_pred):
"""Utility function for evaluating and printing the results for examples.
Default metrics include ROC and Precision @ n
Parameters
----------
clf_name : str
The name of the detector.
y : list or numpy array of shape (n_samples,)
The ground truth. Binary (0: inliers, 1: outliers).
y_pred : list or numpy array of shape (n_samples,)
The raw outlier scores as returned by a fitted model.
"""
y = column_or_1d(y)
y_pred = column_or_1d(y_pred)
check_consistent_length(y, y_pred)
print('{clf_name} ROC:{roc}, precision @ rank n:{prn}'.format(
clf_name=clf_name,
roc=np.round(roc_auc_score(y, y_pred), decimals=4),
prn=np.round(precision_n_scores(y, y_pred), decimals=4)))
示例2: test_column_or_1d
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def test_column_or_1d():
EXAMPLES = [
("binary", ["spam", "egg", "spam"]),
("binary", [0, 1, 0, 1]),
("continuous", np.arange(10) / 20.),
("multiclass", [1, 2, 3]),
("multiclass", [0, 1, 2, 2, 0]),
("multiclass", [[1], [2], [3]]),
("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
("multiclass-multioutput", [[1, 2, 3]]),
("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
("multiclass-multioutput", [[1, 2, 3]]),
("continuous-multioutput", np.arange(30).reshape((-1, 3))),
]
for y_type, y in EXAMPLES:
if y_type in ["binary", 'multiclass', "continuous"]:
assert_array_equal(column_or_1d(y), np.ravel(y))
else:
assert_raises(ValueError, column_or_1d, y)
示例3: transform
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def transform(self, y):
"""Transform labels to normalized encoding.
Parameters
----------
y : array-like of shape [n_samples]
Target values.
Returns
-------
y : array-like of shape [n_samples]
"""
check_is_fitted(self, 'classes_')
y = column_or_1d(y, warn=True)
# transform of empty array is empty array
if _num_samples(y) == 0:
return np.array([])
_, y = _encode(y, uniques=self.classes_, encode=True)
return y
示例4: inverse_transform
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def inverse_transform(self, y):
"""Transform labels back to original encoding.
Parameters
----------
y : numpy array of shape [n_samples]
Target values.
Returns
-------
y : numpy array of shape [n_samples]
"""
check_is_fitted(self, 'classes_')
y = column_or_1d(y, warn=True)
# inverse transform of empty array is empty array
if _num_samples(y) == 0:
return np.array([])
diff = np.setdiff1d(y, np.arange(len(self.classes_)))
if len(diff):
raise ValueError(
"y contains previously unseen labels: %s" % str(diff))
y = np.asarray(y)
return self.classes_[y]
示例5: predict
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def predict(self, T):
"""Calibrate data.
Parameters
----------
* `T` [array-like, shape=(n_samples,)]:
Data to calibrate.
Returns
-------
* `Tt` [array, shape=(n_samples,)]:
Calibrated data.
"""
T = column_or_1d(T).reshape(-1, 1)
num = self.calibrator1.pdf(T)
den = self.calibrator0.pdf(T) + self.calibrator1.pdf(T)
p = num / den
p[den == 0] = 0.5
return p
示例6: fit
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def fit(self, X, y = None):
X = column_or_1d(X, warn = True)
if self._empty_fit():
return self
if self.dtype is not None:
X = cast(X, self.dtype)
mask = self._missing_value_mask(X)
values, counts = numpy.unique(X[~mask], return_counts = True)
if self.with_data:
if (self.missing_value_replacement is not None) and numpy.any(mask) > 0:
self.data_ = numpy.unique(numpy.append(values, self.missing_value_replacement))
else:
self.data_ = values
if self.with_statistics:
self.counts_ = _count(mask)
self.discr_stats_ = (values, counts)
return self
示例7: fit
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def fit(self, y):
"""Fit label encoder
Parameters
----------
y : ArrayRDD (n_samples,)
Target values.
Returns
-------
self : returns an instance of self.
"""
def mapper(y):
y = column_or_1d(y, warn=True)
_check_numpy_unicode_bug(y)
return np.unique(y)
def reducer(a, b):
return np.unique(np.concatenate((a, b)))
self.classes_ = y.map(mapper).reduce(reducer)
return self
示例8: fit
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def fit(self, data, y=None):
"""Fit the scikit-learn model using the formula.
Parameters
----------
data : dict-like (pandas dataframe)
Input data. Contains features and possible labels.
Column names need to match variables in formula.
"""
eval_env = EvalEnvironment.capture(self.eval_env, reference=1)
formula = _drop_intercept(self.formula, self.add_intercept)
design_y, design_X = dmatrices(formula, data, eval_env=eval_env,
NA_action=self.NA_action)
self.design_y_ = design_y.design_info
self.design_X_ = design_X.design_info
self.feature_names_ = design_X.design_info.column_names
# convert to 1d vector so we don't get a warning
# from sklearn.
design_y = column_or_1d(design_y)
est = clone(self.estimator)
self.estimator_ = est.fit(design_X, design_y)
return self
示例9: transform
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def transform(self, y):
"""Perform encoding if already fit.
Parameters
----------
y : array_like, shape=(n_samples,)
The array to encode
Returns
-------
e : array_like, shape=(n_samples,)
The encoded array
"""
check_is_fitted(self, 'classes_')
y = column_or_1d(y, warn=True)
classes = np.unique(y)
_check_numpy_unicode_bug(classes)
# Check not too many:
unseen = _get_unseen()
if len(classes) >= unseen:
raise ValueError('Too many factor levels in feature. Max is %i' % unseen)
e = np.array([
np.searchsorted(self.classes_, x) if x in self.classes_ else unseen
for x in y
])
return e
示例10: score_to_label
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def score_to_label(pred_scores, outliers_fraction=0.1):
"""Turn raw outlier outlier scores to binary labels (0 or 1).
Parameters
----------
pred_scores : list or numpy array of shape (n_samples,)
Raw outlier scores. Outliers are assumed have larger values.
outliers_fraction : float in (0,1)
Percentage of outliers.
Returns
-------
outlier_labels : numpy array of shape (n_samples,)
For each observation, tells whether or not
it should be considered as an outlier according to the
fitted model. Return the outlier probability, ranging
in [0,1].
"""
# check input values
pred_scores = column_or_1d(pred_scores)
check_parameter(outliers_fraction, 0, 1)
threshold = percentile(pred_scores, 100 * (1 - outliers_fraction))
pred_labels = (pred_scores > threshold).astype('int')
return pred_labels
示例11: precision_n_scores
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def precision_n_scores(y, y_pred, n=None):
"""Utility function to calculate precision @ rank n.
Parameters
----------
y : list or numpy array of shape (n_samples,)
The ground truth. Binary (0: inliers, 1: outliers).
y_pred : list or numpy array of shape (n_samples,)
The raw outlier scores as returned by a fitted model.
n : int, optional (default=None)
The number of outliers. if not defined, infer using ground truth.
Returns
-------
precision_at_rank_n : float
Precision at rank n score.
"""
# turn raw prediction decision scores into binary labels
y_pred = get_label_n(y, y_pred, n)
# enforce formats of y and labels_
y = column_or_1d(y)
y_pred = column_or_1d(y_pred)
return precision_score(y, y_pred)
示例12: invert_order
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def invert_order(scores, method='multiplication'):
""" Invert the order of a list of values. The smallest value becomes
the largest in the inverted list. This is useful while combining
multiple detectors since their score order could be different.
Parameters
----------
scores : list, array or numpy array with shape (n_samples,)
The list of values to be inverted
method : str, optional (default='multiplication')
Methods used for order inversion. Valid methods are:
- 'multiplication': multiply by -1
- 'subtraction': max(scores) - scores
Returns
-------
inverted_scores : numpy array of shape (n_samples,)
The inverted list
Examples
--------
>>> scores1 = [0.1, 0.3, 0.5, 0.7, 0.2, 0.1]
>>> invert_order(scores1)
array([-0.1, -0.3, -0.5, -0.7, -0.2, -0.1])
>>> invert_order(scores1, method='subtraction')
array([0.6, 0.4, 0.2, 0. , 0.5, 0.6])
"""
scores = column_or_1d(scores)
if method == 'multiplication':
return scores.ravel() * -1
if method == 'subtraction':
return (scores.max() - scores).ravel()
示例13: fit
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def fit(self, y):
"""Fit label encoder
Parameters
----------
y : array-like of shape (n_samples,)
Target values.
Returns
-------
self : returns an instance of self.
"""
y = column_or_1d(y, warn=True)
self.classes_ = _encode(y)
return self
示例14: fit_transform
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def fit_transform(self, y):
"""Fit label encoder and return encoded labels
Parameters
----------
y : array-like of shape [n_samples]
Target values.
Returns
-------
y : array-like of shape [n_samples]
"""
y = column_or_1d(y, warn=True)
self.classes_, y = _encode(y, encode=True)
return y
示例15: fit
# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import column_or_1d [as 別名]
def fit(self, T, y, sample_weight=None):
"""Fit using `T`, `y` as training data.
Parameters
----------
* `T` [array-like, shape=(n_samples,)]:
Training data.
* `y` [array-like, shape=(n_samples,)]:
Training target.
Returns
-------
* `self` [object]:
`self`.
"""
# Check input
T = column_or_1d(T)
assert sample_weight is None # not supported by KernelDensity
# Fit
t0 = T[y == 0]
t1 = T[y == 1]
self.calibrator0 = KernelDensity(bandwidth=self.bandwidth)
self.calibrator1 = KernelDensity(bandwidth=self.bandwidth)
self.calibrator0.fit(t0.reshape(-1, 1))
self.calibrator1.fit(t1.reshape(-1, 1))
return self