當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.check_X_y方法代碼示例

本文整理匯總了Python中sklearn.utils.check_X_y方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.check_X_y方法的具體用法?Python utils.check_X_y怎麽用?Python utils.check_X_y使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.utils的用法示例。


在下文中一共展示了utils.check_X_y方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y=None, **fit_params):

        # scikit-learn checks
        X, y = utils.check_X_y(X, y, accept_sparse='csr', order='C')

        n_terms = min(self.n_terms, X.shape[1])

        # Get a list of unique labels from y
        labels = np.unique(y)

        # Determine the n top terms per class
        self.top_terms_per_class_ = {
            c: set(np.argpartition(np.sum(X[y == c], axis=0), -n_terms)[-n_terms:])
            for c in labels
        }

        # Return the classifier
        return self 
開發者ID:MaxHalford,項目名稱:xam,代碼行數:20,代碼來源:top_terms.py

示例2: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y):
        """Fit classifier.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The input samples.

        y : numpy array of shape (n_samples,), optional (default=None)
            The ground truth of the input samples (labels).
        """

        # Validate inputs X and y
        X, y = check_X_y(X, y)
        X = check_array(X)
        self._set_n_classes(y)

        if self.pre_fitted:
            print("Training skipped")
            return
        else:
            for clf in self.base_estimators:
                clf.fit(X, y)
                clf.fitted_ = True
            return 
開發者ID:yzhao062,項目名稱:combo,代碼行數:27,代碼來源:classifier_comb.py

示例3: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X: np.array, y: np.array) -> "RandomRegressor":
        """
        Fit the model using X, y as training data.

        :param X: array-like, shape=(n_columns, n_samples,) training data.
        :param y: array-like, shape=(n_samples,) training data.
        :return: Returns an instance of self.
        """
        if self.strategy not in self.allowed_strategies:
            raise ValueError(
                f"strategy {self.strategy} is not in {self.allowed_strategies}"
            )
        X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
        self.dim_ = X.shape[1]

        self.min_ = np.min(y)
        self.max_ = np.max(y)
        self.mu_ = np.mean(y)
        self.sigma_ = np.std(y)

        return self 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:23,代碼來源:dummy.py

示例4: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y):
        """
        Fit the model using X, y as training data.

        :param X: array-like, shape=(n_columns, n_samples, ) training data.
        :param y: array-like, shape=(n_samples, ) training data.
        :return: Returns an instance of self.
        """
        X, y = check_X_y(X, y, estimator=self, dtype=FLOAT_DTYPES)
        if self.span is not None:
            if not 0 <= self.span <= 1:
                raise ValueError(f"Param `span` must be 0 <= span <= 1, got: {self.span}")
        if self.sigma < 0:
            raise ValueError(f"Param `sigma` must be >= 0, got: {self.sigma}")
        self.X_ = X
        self.y_ = y
        return self 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:19,代碼來源:linear_model.py

示例5: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y, sample_weight=None):
        """Fit a separate classifier for each output variable."""

        for _, clf in self.classifiers:
            if not hasattr(clf, 'fit'):
                raise ValueError('Every base classifier should implement a fit method.')

        X, y = check_X_y(X, y, multi_output=True, accept_sparse=True)

        if is_classifier(self):
            check_classification_targets(y)

        if y.ndim == 1:
            raise ValueError('Output y must have at least two dimensions for multi-output classification but has only one.')

        if sample_weight is not None and any([not has_fit_parameter(clf, 'sample_weight') for _, clf in self.classifiers]):
            raise ValueError('One of base classifiers does not support sample weights.')

        self.classifiers_ = Parallel(n_jobs=self.n_jobs)(delayed(_fit_estimator)(clf, X, y[:, i], sample_weight) 
                                                        for i, (_, clf) in zip(range(y.shape[1]), self.classifiers))
        
        return self 
開發者ID:AlgoWit,項目名稱:sports-betting,代碼行數:24,代碼來源:externals.py

示例6: _check_params

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def _check_params(self, X, y):
        """
        Check hyperparameters as well as X and y before proceeding with fit.
        """
        # check X and y are consistent len, X is Array and y is column
        X, y = check_X_y(X, y)
        if self.perc <= 0 or self.perc > 100:
            raise ValueError('The percentile should be between 0 and 100.')

        if self.alpha <= 0 or self.alpha > 1:
            raise ValueError('Alpha should be between 0 and 1.') 
開發者ID:scikit-learn-contrib,項目名稱:boruta_py,代碼行數:13,代碼來源:boruta_py.py

示例7: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y, sample_weight=None):
        """Fit the model according to the given training data.

        Parameters
        ----------
        X : {array-like, sparse matrix}, shape = [n_samples, n_features]
            The training input samples.

        y : array-like, shape = [n_samples]
            The target values.

        sample_weight : array-like, shape (n_samples,) optional
            Array of weights that are assigned to individual samples.
            If not provided, then each sample is given unit weight.
        """
        if not isinstance(self.weakness, float) or not (0.0 < self.weakness <= 1.0):
            raise ValueError('weakness should be a float in (0, 1], got %s' % self.weakness)

        X, y = check_X_y(X, y, accept_sparse='csr', dtype=[np.float64, np.float32],
                         order="C")

        n_features = X.shape[1]
        weakness = 1. - self.weakness
        random_state = check_random_state(self.random_state)

        weights = weakness * random_state.randint(0, 1 + 1, size=(n_features,))
        X_rescaled = _rescale_data(X, weights)
        return super(RandomizedLogisticRegression, self).fit(X_rescaled, y, sample_weight) 
開發者ID:scikit-learn-contrib,項目名稱:stability-selection,代碼行數:30,代碼來源:randomized_lasso.py

示例8: _check_params

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def _check_params(self, X, y):
        # checking input data and scaling it if y is continuous
        X, y = check_X_y(X, y)

        if not self.categorical:
            ss = StandardScaler()
            X = ss.fit_transform(X)
            y = ss.fit_transform(y.reshape(-1, 1))

        # sanity checks
        methods = ['JMI', 'JMIM', 'MRMR']
        if self.method not in methods:
            raise ValueError('Please choose one of the following methods:\n' +
                             '\n'.join(methods))

        if not isinstance(self.k, int):
            raise ValueError("k must be an integer.")
        if self.k < 1:
            raise ValueError('k must be larger than 0.')
        if self.categorical and np.any(self.k > np.bincount(y)):
            raise ValueError('k must be smaller than your smallest class.')

        if not isinstance(self.categorical, bool):
            raise ValueError('Categorical must be Boolean.')
        if self.categorical and np.unique(y).shape[0] > 5:
            print ('Are you sure y is categorical? It has more than 5 levels.')
        if not self.categorical and self._isinteger(y):
            print ('Are you sure y is continuous? It seems to be discrete.')
        if self._isinteger(X):
            print ('The values of X seem to be discrete. MI_FS will treat them'
                   'as continuous.')
        return X, y 
開發者ID:danielhomola,項目名稱:mifs,代碼行數:34,代碼來源:mifs.py

示例9: test_check_array_warn_on_dtype_deprecation

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def test_check_array_warn_on_dtype_deprecation():
    X = np.asarray([[0.0], [1.0]])
    Y = np.asarray([[2.0], [3.0]])
    with pytest.warns(DeprecationWarning,
                      match="'warn_on_dtype' is deprecated"):
        check_array(X, warn_on_dtype=True)
    with pytest.warns(DeprecationWarning,
                      match="'warn_on_dtype' is deprecated"):
        check_X_y(X, Y, warn_on_dtype=True) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_validation.py

示例10: test_check_X_y_informative_error

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def test_check_X_y_informative_error():
    X = np.ones((2, 2))
    y = None
    assert_raise_message(ValueError, "y cannot be None", check_X_y, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:6,代碼來源:test_validation.py

示例11: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y, sample_weight=None):

        X, y = utils.check_X_y(X, y, accept_sparse='csr', order='C')

        def pr(x, y_i, y):
            p = x[y == y_i].sum(0)
            return (p+1) / ((y==y_i).sum()+1)

        self.r_ = sparse.csr_matrix(np.log(pr(X, 1, y) / pr(X, 0, y)))

        return super().fit(X.multiply(self.r_), y, sample_weight) 
開發者ID:MaxHalford,項目名稱:xam,代碼行數:13,代碼來源:nb_svm.py

示例12: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y, **fit_params):
        """Determine which are the best cut points for each column in X based on y."""

        X, y = check_X_y(X, y, y_numeric=True)

        self.cut_points_ = [mdlp_cut(x, y, []) for x in X.T]
        return self 
開發者ID:MaxHalford,項目名稱:xam,代碼行數:9,代碼來源:mdlp.py

示例13: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y, **fit_params):
        """Fit the model

        Fit the base estimators on CV folds, then use their prediction on the
        validation folds to train the meta-estimator. Then re-fit base
        estimators on full training set.

        Parameters
        ----------
        X : np.ndarray, list of numbers
            Training data.
        y : np.ndarray, list of numbers
            Training targets.
        **fit_params : dict of {string, object}
            Parameters passed to the ``fit`` method of each estimator, where
            each parameter name is prefixed such that parameter ``p`` for
            estimator ``s`` has key ``s__p``.

        Returns
        -------
        self : BaseStackedModel
            This estimator
        """
        self._validate_estimators()
        X, y = check_X_y(X, y, multi_output=True)

        # Fit base estimators on CV training folds, produce features for
        # meta-estimator from predictions on CV test folds.
        Xmeta, ymeta, meta_params = self._base_est_fit_predict(X, y,
                                                               **fit_params)
        # Fit meta-estimator on test fold predictions of base estimators.
        self.meta_estimator.fit(Xmeta, ymeta, **meta_params)
        # Now fit base estimators again, this time on full training set
        self._base_est_fit(X, y, **fit_params)

        return self

    # _replace_est copied nearly verbatim from sklearn.pipeline._BasePipeline
    # v0.18.1 "_replace_step" method. 
開發者ID:civisanalytics,項目名稱:civisml-extensions,代碼行數:41,代碼來源:stacking.py

示例14: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y, sample_weight=None):
        """Fit non-negative linear model.

        Parameters
        ----------
        X : numpy array or sparse matrix of shape [n_samples, n_features]
            Training data
        y : numpy array of shape [n_samples,]
            Target values
        sample_weight : numpy array of shape [n_samples]
            Individual weights for each sample

        Returns
        -------
        self : returns an instance of self.

        """
        X, y = check_X_y(X, y, y_numeric=True, multi_output=False)

        if sample_weight is not None and np.atleast_1d(sample_weight).ndim > 1:
            raise ValueError("Sample weights must be 1D array or scalar")

        X, y, X_offset, y_offset, X_scale = self._preprocess_data(
            X, y, fit_intercept=self.fit_intercept, normalize=self.normalize,
            copy=self.copy_X, sample_weight=sample_weight)

        if sample_weight is not None:
            # Sample weight can be implemented via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

        self.coef_, result = nnls(X, y.squeeze())

        if np.all(self.coef_ == 0):
            raise ConvergenceWarning("All coefficients estimated to be zero in"
                                     " the non-negative least squares fit.")

        self._set_intercept(X_offset, y_offset, X_scale)
        self.opt_result_ = OptimizeResult(success=True, status=0, x=self.coef_,
                                          fun=result)
        return self 
開發者ID:civisanalytics,項目名稱:civisml-extensions,代碼行數:42,代碼來源:nonnegative.py

示例15: fit

# 需要導入模塊: from sklearn import utils [as 別名]
# 或者: from sklearn.utils import check_X_y [as 別名]
def fit(self, X, y):
        """Fit classifier.

        Parameters
        ----------
        X : numpy array of shape (n_samples, n_features)
            The input samples.

        y : numpy array of shape (n_samples,), optional (default=None)
            The ground truth of the input samples (labels).
        """

        # Validate inputs X and y
        X, y = check_X_y(X, y)
        X = check_array(X)
        check_classification_targets(y)
        self._classes = len(np.unique(y))
        n_samples = X.shape[0]

        # save the train ground truth for evaluation purpose
        self.y_train_ = y

        # build KDTree out of training subspace
        self.tree_ = KDTree(X)

        self.y_train_predicted_ = np.zeros(
            [n_samples, self.n_base_estimators_])

        # train all base classifiers on X, and get their local predicted scores
        # iterate over all base classifiers
        for i, clf in enumerate(self.base_estimators):
            clf.fit(X, y)
            self.y_train_predicted_[:, i] = clf.predict(X)
            clf.fitted_ = True

        self.fitted_ = True

        return 
開發者ID:yzhao062,項目名稱:combo,代碼行數:40,代碼來源:classifier_des.py


注:本文中的sklearn.utils.check_X_y方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。