當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.tree方法代碼示例

本文整理匯總了Python中sklearn.tree方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.tree方法的具體用法?Python sklearn.tree怎麽用?Python sklearn.tree使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.tree方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_tree_paths

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def _get_tree_paths(tree, node_id, depth=0):
    """
    Returns all paths through the tree as list of node_ids
    """
    if node_id == _tree.TREE_LEAF:
        raise ValueError("Invalid node_id %s" % _tree.TREE_LEAF)

    left_child = tree.children_left[node_id]
    right_child = tree.children_right[node_id]

    if left_child != _tree.TREE_LEAF:
        left_paths = _get_tree_paths(tree, left_child, depth=depth + 1)
        right_paths = _get_tree_paths(tree, right_child, depth=depth + 1)

        for path in left_paths:
            path.append(node_id)
        for path in right_paths:
            path.append(node_id)
        paths = left_paths + right_paths
    else:
        paths = [[node_id]]
    return paths 
開發者ID:andosa,項目名稱:treeinterpreter,代碼行數:24,代碼來源:treeinterpreter.py

示例2: visualize_tree

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def visualize_tree(tree, feature_names, save_dir='./'):
    """Create tree png using graphviz.

    Args
    ----
    tree -- scikit-learn DecsisionTree.
    feature_names -- list of feature names.
    """
    with open(save_dir+'/'+"dt.dot", 'w') as f:
        export_graphviz(tree, out_file=f,
                        feature_names=feature_names)

    command = ["dot", "-Tpng", save_dir+"/dt.dot", "-o", save_dir+"/dt.png"]
    try:
        subprocess.check_call(command)
    except:
        exit("Could not run dot, ie graphviz, to "
             "produce visualization") 
開發者ID:mahendrakhened,項目名稱:Automated-Cardiac-Segmentation-and-Disease-Diagnosis,代碼行數:20,代碼來源:stage_1_diagnosis.py

示例3: test_pickle_version_warning_is_not_raised_with_matching_version

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def test_pickle_version_warning_is_not_raised_with_matching_version():
    iris = datasets.load_iris()
    tree = DecisionTreeClassifier().fit(iris.data, iris.target)
    tree_pickle = pickle.dumps(tree)
    assert b"version" in tree_pickle
    tree_restored = assert_no_warnings(pickle.loads, tree_pickle)

    # test that we can predict with the restored decision tree classifier
    score_of_original = tree.score(iris.data, iris.target)
    score_of_restored = tree_restored.score(iris.data, iris.target)
    assert_equal(score_of_original, score_of_restored) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:test_base.py

示例4: test_pickle_version_warning_is_issued_upon_different_version

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def test_pickle_version_warning_is_issued_upon_different_version():
    iris = datasets.load_iris()
    tree = TreeBadVersion().fit(iris.data, iris.target)
    tree_pickle_other = pickle.dumps(tree)
    message = pickle_error_message.format(estimator="TreeBadVersion",
                                          old_version="something",
                                          current_version=sklearn.__version__)
    assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:10,代碼來源:test_base.py

示例5: test_pickle_version_warning_is_issued_when_no_version_info_in_pickle

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle():
    iris = datasets.load_iris()
    # TreeNoVersion has no getstate, like pre-0.18
    tree = TreeNoVersion().fit(iris.data, iris.target)

    tree_pickle_noversion = pickle.dumps(tree)
    assert b"version" not in tree_pickle_noversion
    message = pickle_error_message.format(estimator="TreeNoVersion",
                                          old_version="pre-0.18",
                                          current_version=sklearn.__version__)
    # check we got the warning about using pre-0.18 pickle
    assert_warns_message(UserWarning, message, pickle.loads,
                         tree_pickle_noversion) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_base.py

示例6: test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator():
    iris = datasets.load_iris()
    tree = TreeNoVersion().fit(iris.data, iris.target)
    tree_pickle_noversion = pickle.dumps(tree)
    try:
        module_backup = TreeNoVersion.__module__
        TreeNoVersion.__module__ = "notsklearn"
        assert_no_warnings(pickle.loads, tree_pickle_noversion)
    finally:
        TreeNoVersion.__module__ = module_backup 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_base.py

示例7: decisiontree_on_fold

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def decisiontree_on_fold(feature_sets, train, test, y, y_all, X, dim, dimsum, learn_options):
    '''
    DecisionTreeRegressor from scikitlearn.
    '''
    clf = tree.DecisionTreeRegressor()
    clf.fit(X[train], y[train][:, 0])
    y_pred = clf.predict(X[test])[:, None]
    return y_pred, clf 
開發者ID:MicrosoftResearch,項目名稱:Azimuth,代碼行數:10,代碼來源:ensembles.py

示例8: encode

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def encode(cls, obj):
        import sklearn.tree
        assert type(obj) == sklearn.tree._tree.Tree

        init_args = obj.__reduce__()[1]
        state = obj.__getstate__()

        return {
            '__mlspl_type': [type(obj).__module__, type(obj).__name__],
            'init_args': init_args,
            'state': state
        } 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:14,代碼來源:codecs.py

示例9: decode

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def decode(cls, obj):
        import sklearn.tree

        init_args = obj['init_args']

        state = obj['state']

        # Add max_depth for backwards compatibility with PSC 1.2
        # Previous version did not set the max_depth in the state when calling __getstate__
        # https://github.com/scikit-learn/scikit-learn/blob/51a765acfa4c5d1ec05fc4b406968ad233c75162/sklearn/tree/_tree.pyx#L615

        # and has been added in sklearn 0.18 to be used in both __getstate__ and __setstate__
        # https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a805efbe4bb06516670a9b8c690992bd7/sklearn/tree/_tree.pyx#L649
        
        # Older models will not have the max_depth in their stored state, such that a key error is raised.
        # the max_depth is only used in the decision path method, which we don't currently use
        # and is used to init an np array of zeros in version 0.18:
        # https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a805efbe4bb06516670a9b8c690992bd7/sklearn/tree/_tree.pyx#L926
        # https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a805efbe4bb06516670a9b8c690992bd7/sklearn/tree/_tree.pyx#L991
        state['max_depth'] = state.get('max_depth', 0)

        t = sklearn.tree._tree.Tree(*init_args)

        t.__setstate__(state)

        return t 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:28,代碼來源:codecs.py

示例10: dtree

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def dtree(frame, target, criterion = 'gini', depth = None, sample = 0.01, ratio = 0.15):
    tree = DecisionTreeClassifier(
        criterion = criterion,
        min_samples_leaf = sample,
        max_depth = depth,
    )

    tree.fit(frame.fillna(-1), target)

    dot_string = tree_to_dot(tree, frame.columns.values, high_light = ratio)

    dot_to_img(dot_string, file = target.name + '.png') 
開發者ID:amphibian-dev,項目名稱:toad,代碼行數:14,代碼來源:tree.py

示例11: selection_parameters_for_classfier

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def selection_parameters_for_classfier(X,y):

    from sklearn import grid_search

    #paras={ 'n_neighbors':[1,10], 'weights':['uniform', 'distance'], 'algorithm':['auto', 'ball_tree','kd_tree', 'brute'], 'leaf_size':[20,50]}
    #knn = KNeighborsClassifier()

    #naive_bayes
    #nbg = GaussianNB()
    #nbm = MultinomialNB()
    #nbb = BernoulliNB()

    #decision tree
    #paras={ 'criterion':['gini','entropy'], 'splitter':['random', 'best'], 'max_features':[None, 'auto','sqrt', 'log2'], 'min_samples_split':[1,10]}
    #dtree = DecisionTreeClassifier()

    #random forest
    #rforest = RandomForestClassifier()
    #paras={ 'n_estimators':[2,15], 'criterion':['gini','entropy'], 'max_features': ['auto','sqrt', 'log2'], 'min_samples_split':[1,10]}

    #svm
    svmm = svm.SVC()
    paras={'kernel':['rbf','linear','poly']}


    clt =grid_search.GridSearchCV(svmm, paras, cv=5)
    clt.fit(X,y)
    print (clt)
    #print (clt.get_params())
    print (clt.set_params())
    print (clt.score(X,y))

    #scores = cross_val_score(clt,X,y,cv=10)
    #print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))


#this is to get score using cross_validation 
開發者ID:ririhedou,項目名稱:dr_droid,代碼行數:39,代碼來源:GetMLPara.py

示例12: my_get_fp_fn_CV

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def my_get_fp_fn_CV(X_original,y):

    #generate classfiers
    knn = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', n_neighbors=5, p=2, weights='uniform')

    #decision tree
    dtree = DecisionTreeClassifier( criterion='gini', min_samples_leaf=4, min_samples_split=2, random_state=None, splitter='best')

    #naive
    #nbbern = BernoulliNB()

    #random forest
    rforest = RandomForestClassifier(bootstrap=True, criterion='gini', max_depth=None, max_features='auto',  min_samples_leaf=1, min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False, random_state=3)

    #svm
    svmrbf= svm.SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,  kernel='rbf', max_iter=-1, probability=True, random_state=None,
shrinking=True, tol=0.001, verbose=False)

    #reduce the size
    #X = SelectKBest(f_classif, k=80).fit_transform(X_original,y)
    skb = SelectKBest(f_classif, k=80).fit(X_original,y)
    X = skb.fit_transform(X_original,y)

    print ("KNN")
    my_get_fp_fn_inter(knn,X,y)
    print ("DTree")
    my_get_fp_fn_inter(dtree,X,y)
    print ("rforest")
    my_get_fp_fn_inter(rforest,X,y)
    #print ("naive bayes")
    #my_get_fp_fn_inter(nbbern,X,y)
    print ("SVMrbf")
    my_get_fp_fn_inter(svmrbf,X,y) 
開發者ID:ririhedou,項目名稱:dr_droid,代碼行數:35,代碼來源:GetMLPara.py

示例13: train_and_test

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def train_and_test(X,y):

    #KNN
    knn = KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski', n_neighbors=5, p=2, weights='uniform')

    #naive-bayees
    nbbern = BernoulliNB()

    #decision tree
    dtree = DecisionTreeClassifier( criterion='gini', min_samples_leaf=4, min_samples_split=2, random_state=None, splitter='best')

    #random forest
    rforest = RandomForestClassifier(bootstrap=True, criterion='gini', max_depth=None, max_features='auto',  min_samples_leaf=1, min_samples_split=2, n_estimators=10, n_jobs=1, oob_score=False, random_state=3)

    #svm
    svmrbf= svm.SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3,  kernel='rbf', max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)


    get_scroe_using_cv(knn, X, y)
    get_scroe_using_cv(nbbern, X, y)
    get_scroe_using_cv(dtree, X, y)
    get_scroe_using_cv(rforest, X, y)
    get_scroe_using_cv(svmrbf, X, y)
    print ("\n")

######################################################################

#this is to draw the Roc curve example by splitting the dataset
#just want a figure to make it more beautiful 
開發者ID:ririhedou,項目名稱:dr_droid,代碼行數:32,代碼來源:GetMLPara.py

示例14: get_fpr_tpr

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def get_fpr_tpr(clt, X, y):

    random_state = np.random.RandomState(0)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25 , random_state = 0)

    #from sklearn import tree
    #clt = tree.DecisionTreeClassifier( criterion='entropy', min_samples_leaf=2, min_samples_split=2, random_state=None, splitter='best')
    clt = clt.fit(X_train,y_train)
    #from sklearn.externals.six import StringIO
    #with open("iris_plus.dot", 'w') as f:
    #     f = tree.export_graphviz(clt, out_file=f)

    y_pred = clt.predict(X_test)

    #accuracy score
    _accuracy_score = accuracy_score(y_test, y_pred)

    print ("Accuracy score {}".format(_accuracy_score))

    #roc curve
    probas_ = clt.predict_proba(X_test)
    #print (probas_)
    #draw_confusion_matrix(y_test,y_pred)

    #print probas_
    fpr, tpr, thresholds = roc_curve(y_test, probas_[:, 1])
    #print (fpr, tpr,thresholds)
    roc_auc = auc(fpr, tpr)
    print ("Area under the ROC curve : %f" % roc_auc)

    return fpr, tpr , roc_auc


# this is used to draw 
開發者ID:ririhedou,項目名稱:dr_droid,代碼行數:36,代碼來源:GetMLPara.py

示例15: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import tree [as 別名]
def __init__(self, ranking_size, logging_policy, target_policy, estimator_type):
        Estimator.__init__(self, ranking_size, logging_policy, target_policy)
        self.name = 'Direct_'+estimator_type
        self.estimatorType = estimator_type
        self.numFeatures=self.loggingPolicy.dataset.features[0].shape[1]
        self.hyperParams={'alpha': (numpy.logspace(-2,1,num=4,base=10)).tolist()}
        self.treeDepths={'max_depth': list(range(3,15,3))}
        
        if self.estimatorType=='tree':
            self.tree=None
        else:
            self.policyParams=None
            
        #This member is set on-demand by estimateAll(...)
        self.savedValues=None 
開發者ID:adith387,項目名稱:slates_semisynth_expts,代碼行數:17,代碼來源:Estimators.py


注:本文中的sklearn.tree方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。